Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An insurance company supposes that each person has an accident parameter and that the yearly number of accidents of someone whose accident parameter is λ is Poisson distributed with mean λ. They also suppose that the parameter value of a newly insured person can be assumed to be the value of a gamma random variable with parameters s and α. If a newly insured person has n accidents in her first year, find the conditional density of her accident parameter. Also, determine the expected number of accidents that she will have in the following year.

Short Answer

Expert verified

Conditional density:

fλN(ln)=asn!·pn·Γ(s)ln+s-1e-l(α+1)

Expected number of accidents:

E(λN=n)=n+sα+1

Step by step solution

01

Given information 

The accident parameter is λis Poisson distributed with mean λ.

λis a random variable with distributed Gamma (s,α).

The newly insured person has n accidents in her first year.

02

Explanation

Let N be the random variable that marks the number of accidents of some person in a certain year.

According to the statement, the density function of λ,

fλ(l)=αsΓ(s)ls-1e-αl

Now, with N = n

We need o find the conditional density of λ.

Then using the Bayesian formula,

fλN(ln)=P(N=nλ=l)fλ(l)P(N=n)

Now define

P(N=n)=pn

we have

P(N=nλ=l)fλ(l)P(N=n)=1pn·lnn!e-l·αsΓ(s)ls-1e-αl

such that

localid="1647241920552" fλN(ln)=asn!·pn·Γ(s)ln+s-1e-l(α+1)

with parameters n+sandα+1,

λ/N=nhas Gamma distribution.

Moreover, the expected number of accidents that she will have in the following year,

localid="1647241966218" E(λN=n)=n+sα+1

Where the formula for the expected value of gamma distribution has been used.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let X1,...,Xn be independent and identically distributed random variables having distribution function F and density f. The quantity MK[X(1)+X(n)]/2, defined to be the average of the smallest and largest values in X1,...,Xn, is called the midrange of the sequence. Show that its distribution function is FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">

FM(m)=nmq[F(2mx)F(x)]n1f(x)dxuncaught exception: Http Error #500

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Http Error #500') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Http Error #500') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Http Error #500') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Http Error #500') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Http Error #500') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('587f0c781406aea...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">FM(m)=n-m[F(2mx)F(x)]n1f(x)dx.


(a) If X has a gamma distribution with parameters(n,𝜆)what is the distribution of cX,c>0

(b) Show that 𝒳2n22𝜆has a gamma distribution with parameters (n,𝝀)when n is a positive integer and 𝒳2n2is a chi-squared random variable with 2ndegrees of freedom

Suppose that n points are independently chosen at random on the circumference of a circle, and we want the probability that they all lie in some semicircle. That is, we want the probability that there is a line passing through the center of the circle such that all the points are on one side of that line, as shown in the following diagram:

Let P1, ... ,Pn denote the n points. Let A denote the event that all the points are contained in some semicircle, and let Ai be the event that all the points lie in the semicircle beginning at the point Pi and going clockwise for 180◦, i = 1, ... , n.

(a) Express A in terms of the Ai.

(b) Are the Ai mutually exclusive?

(c) Find P(A).

If X and Y are jointly continuous with joint density function fX,Y(x, y), show that X + Y is continuous with density function fX+Y(t)=qqfX,Y(x,tx)dx

Let X1,X2,...be a sequence of independent uniform (0,1)random variables. For a fixed constant c, define the random variable N by N=min{n:Xn>c}Is N independent ofXN? That is, does knowing the value of the first random variable that is greater than c affect the probability distribution of when this random variable occurs? Give an intuitive explanation for your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free