Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Your company must make a sealed bid for a construction project. If you succeed in winning the contract (by having the lowest bid), then you plan to pay another firm $100,000 to do the work. If you believe that the minimum bid (in thousands of dollars) of the other participating companies can be modeled as the value of a random variable that is uniformly distributed on (70,140), how much should you bid to maximize your expected profit?

Short Answer

Expert verified

The maximum profit to be expected is40/7thousands of dollars

Step by step solution

01

Evaluate E(P)

The lowest bid's density function is

f(x)=1140-70

Otherwise, it is equal to zero for x(70,140). Let's say we invest xthousand dollars in our offer. We will make a profit of (x-10)thousand dollars if our bid wins the competition. In that instance, the profit that can be expected is

E(P)=(x-100)×140-x70=170240x-x2-14000

02

Find Maximum profit

Let's discover a value for xthat optimizes profit. We have that with distinguishing.

ddxE(P)=170(240-2x)=0

This means that x=120. As a result, the highest profit

E(P)x=120=(120-100)×140-12070=407

thousand of dollars.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Your company must make a sealed bid for a construction project. If you succeed in winning the contract (by having the lowest bid), then you plan to pay another firm $100,000 to do the work. If you believe that the minimum bid (in thousands of dollars) of the other participating companies can be modeled as the value of a random variable that is uniformly distributed on (70, 140), how much should you bid to maximize your expected profit?

Let X and Y be independent random variables that are both equally likely to be either 1, 2, . . . ,(10)N, where N is very large. Let D denote the greatest common divisor of X and Y, and let Q k = P{D = k}.

(a) Give a heuristic argument that Q k = 1 k2 Q1. Hint: Note that in order for D to equal k, k must divide both X and Y and also X/k, and Y/k must be relatively prime. (That is, X/k, and Y/k must have a greatest common divisor equal to 1.) (b) Use part (a) to show that Q1 = P{X and Y are relatively prime} = 1 q k=1 1/k2 It is a well-known identity that !q 1 1/k2 = π2/6, so Q1 = 6/π2. (In number theory, this is known as the Legendre theorem.) (c) Now argue that Q1 = "q i=1  P2 i − 1 P2 i  where Pi is the smallest prime greater than 1. Hint: X and Y will be relatively prime if they have no common prime factors. Hence, from part (b), we see that Problem 11 of Chapter 4 is that X and Y are relatively prime if XY has no multiple prime factors.)

Trains headed for destination A arrive at the train station at 15-minute intervals starting at 7 a.m., whereas trains headed for destination B arrive at 15-minute intervals starting at 7:05 a.m.

(a) If a certain passenger arrives at the station at a time uniformly distributed between 7 and 8 a.m. and then gets on the first train that arrives, what proportion of time does he or she go to destination A?

(b)What if the passenger arrives at a time uniformly distributed

between 7:10 and 8:10 a.m.?

The random variable Xhas the probability density function

f(x)=ax+bx20<x<10otherwise

If E[X]=6, find

(a) P{X<12}and

(b) Var(X).

Let X have probability density f X. Find the probability density function of the random variable Y defined by Y = a X + b.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free