Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that X is a normal random variable with

mean 5. If P{X > 9} = .2, approximately what is Var(X)?

Short Answer

Expert verified

The required variance is22.66.

Step by step solution

01

Step 1. Given Information.

Xis a random variable with mean 5.

Also,PX>9=0.2.

02

Step 2. Find VarX.

It is given that,

PX>9=0.2Then,PX-μσ>9-μσ=0.21-φ9-μσ=0.89-μσ=0.84σ=9-μ0.84σ=9-50.84σ=4.76σ2=4.762=22.66

Hence,VarX=22.66

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let X and Y be independent random variables that are both equally likely to be either 1, 2, . . . ,(10)N, where N is very large. Let D denote the greatest common divisor of X and Y, and let Q k = P{D = k}.

(a) Give a heuristic argument that Q k = 1 k2 Q1. Hint: Note that in order for D to equal k, k must divide both X and Y and also X/k, and Y/k must be relatively prime. (That is, X/k, and Y/k must have a greatest common divisor equal to 1.) (b) Use part (a) to show that Q1 = P{X and Y are relatively prime} = 1 q k=1 1/k2 It is a well-known identity that !q 1 1/k2 = π2/6, so Q1 = 6/π2. (In number theory, this is known as the Legendre theorem.) (c) Now argue that Q1 = "q i=1  P2 i − 1 P2 i  where Pi is the smallest prime greater than 1. Hint: X and Y will be relatively prime if they have no common prime factors. Hence, from part (b), we see that Problem 11 of Chapter 4 is that X and Y are relatively prime if XY has no multiple prime factors.)

Jones figures that the total number of thousands of miles that an auto can be driven before it would need to be junked is an exponential random variable with a parameter120. Smith has a used car that he claims has been driven only 10,000miles. If Jones purchases the car, what is the

probability that she would get at least 20,000additional miles out of it? Repeat under the assumption that the life-

time mileage of the car is not exponentially distributed, but rather is (in thousands of miles) uniformly distributed over(0,40).

Compute the hazard rate function of a Weibull random variable and show it is increasing when 𝛽1and decreasing when 𝛽1

Consider Example 4b of Chapter 4, but now suppose that the seasonal demand is a continuous random variable having probability density function f. Show that the optimal amount to stock is the value s*that satisfies

Fs*=bb+l

where bis net profit per unit sale, lis the net loss per unit

unsold, and F is the cumulative distribution function of the

seasonal demand.

Your company must make a sealed bid for a construction project. If you succeed in winning the contract (by having the lowest bid), then you plan to pay another firm $100,000 to do the work. If you believe that the minimum bid (in thousands of dollars) of the other participating companies can be modeled as the value of a random variable that is uniformly distributed on (70, 140), how much should you bid to maximize your expected profit?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free