Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Urn Ahas 5white and 7black balls. Urn Bhas 3white and 12black balls. We flip a fair coin. If the outcome is heads, then a ball from urn A is selected, whereas if the outcome is tails, then a ball from urn B is selected. Suppose that a white ball is selected. What is the probability that the coin landed tails?

Short Answer

Expert verified

The probability that the coin landed tails is 1237.

Step by step solution

01

Given information

Urn Ahas 5white and 7black balls. Urn Bhas 3white and 12black balls. We flip a fair coin. If the outcome is heads, then a ball from urn A is selected, whereas if the outcome is tails, then a ball from urn B is selected.

02

Solution

Urn A5 white

7BlackP(white)=512

Urn B3 White

12BlackP(white)=315

P(Tail | white)=12×31512×315+12×512

=330×24074

=1237

03

Final answer

The probability that the coin landed tails is1237.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

With probability .6, the present was hidden by mom; with probability .4, it was hidden by dad. When mom hides the present, she hides it upstairs 70percent of the time and downstairs 30percent of the time. Dad is equally likely to hide it upstairs or downstairs.

(a) What is the probability that the present is upstairs?

(b) Given that it is downstairs, what is the probability it was hidden by dad?

Consider two boxes, one containing 1black and 1white marble, the other 2black and 1white marble. A 100Chapter 3Conditional Probability and Independence box is selected at random, and a marble is drawn from it at random. What is the probability that the marble is black? What is the probability that the first box was the one selected given that the marble is white ?

The color of a person’s eyes is determined by a single pair of genes. If they are both blue-eyed genes, then the person will have blue eyes; if they are both brown-eyed genes, then the person will have brown eyes; and if one of them is a blue-eyed gene and the other a brown-eyed gene, then the person will have brown eyes. (Because of the latter fact, we say that the brown-eyed gene is dominant over the blue-eyed one.) A newborn child independently receives one eye gene from each of its parents, and the gene it receives from a parent is equally likely to be either of the two eye genes of that parent. Suppose that Smith and both of his parents have brown eyes, but Smith’s sister has blue eyes.

(a) What is the probability that Smith possesses a blue eyed gene?

(b) Suppose that Smith’s wife has blue eyes. What is the probability that their first child will have blue eyes?

(c) If their first child has brown eyes, what is the probability that their next child will also have brown eyes?

Two cards are randomly chosen without replacement from an ordinary deck of52 cards. Let B be the event that both cards are aces, let Asbe the event that the ace of spades is chosen, and letA be the event that at least one ace is chosen. Find

(a)role="math" localid="1647789007426" P(B|As)

(b) P(B|A)

In Example 3f, suppose that the new evidence is subject to different possible interpretations and in fact shows only that it is 90 percent likely that the criminal possesses the characteristic in question. In this case, how likely would it be that the suspect is guilty (assuming, as before, that he has the characteristic)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free