Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

There is a 60percent chance that event Awill occur. If Adoes not occur, then there is a 10percent chance that Bwill occur. What is the probability that at least one of the events AorBwill occur?

Short Answer

Expert verified

The probability that at least one of the events Aor Bwill occur0.64=64%

Step by step solution

01

Given

P(A)=60%=0.6

PBAc=10%=0.1

02

Complement Rule

Be using the Complement rule to help you out: PAc=P(notA)=1P(A) PAc=1P(A)

While Aarises, ABstill must follow (and Ais encompassed under AB). A given venue's frequency is similar to 1.

P(ABA)=1

Because Adoesn't quite arise, ABcan really only eventuate once Bhappens.

PABAc=PBAc=0.1

03

Law of Total Probability

Be using the law of total probability to its benefit: P(A)=i=1mPBiPABi

P(AB)=P(ABA)P(A)+PABAcPAc

role="math" localid="1649656510027" =1×0.6+0.1×0.4

=0.6+0.04=0.64=64%

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The color of a person’s eyes is determined by a single pair of genes. If they are both blue-eyed genes, then the person will have blue eyes; if they are both brown-eyed genes, then the person will have brown eyes; and if one of them is a blue-eyed gene and the other a brown-eyed gene, then the person will have brown eyes. (Because of the latter fact, we say that the brown-eyed gene is dominant over the blue-eyed one.) A newborn child independently receives one eye gene from each of its parents, and the gene it receives from a parent is equally likely to be either of the two eye genes of that parent. Suppose that Smith and both of his parents have brown eyes, but Smith’s sister has blue eyes.

(a) What is the probability that Smith possesses a blue eyed gene?

(b) Suppose that Smith’s wife has blue eyes. What is the probability that their first child will have blue eyes?

(c) If their first child has brown eyes, what is the probability that their next child will also have brown eyes?

On the morning of September 30,1982, the won–lost records of the three leading baseball teams in the Western Division of the National League were as follows:

Each team had 3games remaining. All 3of the Giants’ games were with the Dodgers, and the 3remaining games of the Braves were against the San Diego Padres. Suppose that the outcomes of all remaining games are independent and each game is equally likely to be won by either participant. For each team, what is the probability that it will win the division title? If two teams tie for first place, they have a playoff game, which each team has an equal chance of winning.

Three prisoners are informed by their jailer that one of them has been chosen at random to be executed and the other two are to be freed. Prisoner A asks the jailer to tell him privately which of his fellow prisoners will be set free, claiming that there would be no harm in divulging this information because he already knows that at least one of the two will go free. The jailer refuses to answer the question, pointing out that if A knew which of his fellow prisoners were to be set free, then his own probability of being executed would rise from 1 3 to 1 2 because he would then be one of two prisoners. What do you think of the jailer’s reasoning?

(a) A gambler has a fair coin and a two-headed coin in his pocket. He selects one of the coins at random; when he flips it, it shows heads. What is the probability that it is the fair coin?

(b) Suppose that he flips the same coin a second time and, again, it shows heads. Now what is the probability that it is the fair coin?

(c) Suppose that he flips the same coin a third time and it shows tails. Now what is the probability that it is the fair coin?

A and B flip coins. A starts and continues flipping

until a tail occurs, at which point B starts flipping and continues

until there is a tail. Then A takes over, and so on.

Let P1 be the probability of the coin landing on heads

when A flips and P2 when B flips. The winner of the game

is the first one to get

(a) 2 heads in a row;

(b) a total of 2 heads;

(c) 3 heads in a row;

(d) a total of 3 heads.

In each case, find the probability that A wins

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free