Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In a certain community, 36 percent of the families own a dog and 22 percent of the families that own a dog also own a cat. In addition, 30 percent of the families own a cat. What is (a) the probability that a randomly selected family owns both a dog and a cat? (b) the conditional probability that a randomly selected family owns a dog given that it owns a cat?

Short Answer

Expert verified

P(DogandCat)=0.0792

P(DogICat)=0.264

Step by step solution

01

Given Information of a & b

Given that in a certain community, 36 percent of the families own a dog and 22 percent of the families that own a dog also own a cat

We have to find the probability that a randomly selected family owns both a dog and a cat

Also, find the conditional probability that a randomly selected family owns a dog given that it owns a cat

02

Explanation

03

Explanation-a

a)P(Dog and Cat)=0.36×0.22

=0.0792

04

Explanation-b

b)P(Dogcat)=P(Dog and Cat)P(Cat)

P(cat)=0.30given

P(Dogcat)=0.36×0.220.30

=0.264

05

Final Answer of a & b

(a) P(Dog and Cat)=0.0792

(b) P(Dogcat)=0.264

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a class, there are 4 first-year boys, 6 first-year girls, and 6 sophomore boys. How many sophomore girls must be present if sex and class are to be independent when a student is selected at random?

A total of 500married working couples were polled about their annual salaries , with the following information resulting:

Wife Husband
Less than
\(25,000
More than
\)25,000
Less than\(25,000212198
More than\)25,0003654

For instance, in 36of the couples, the wife earned more and the husband earned less than \(25,000. If one of the couples is randomly chosen, what is

(a) the probability that the husband earns less than \)25,000?

(b) the conditional probability that the wife earns more than \(25,000given that the husband earns more than this amount?

(c) the conditional probability that the wife earns more than \)25,000given that the husband earns less than this amount?

A parallel system functions whenever at least one of its components works. Consider a parallel system ofncomponents, and suppose that each component works independently with probability 12. Find the conditional probability that component 1 works given that the system is functioning.

A worker has asked her supervisor for a letter of recommendation for a new job. She estimates that there is an 80 percent chance that she will get the job if she receives a strong recommendation, a 40 percent chance if she receives a moderately good recommendation, and a 10 percent chance if she receives a weak recommendation. She further estimates that the probabilities that the recommendation will be strong, moderate, and weak are .7, .2, and .1, respectively.

(a) How certain is she that she will receive the new job offer?

(b) Given that she does receive the offer, how likely should she feel that she received a strong recommendation? a moderate recommendation? a weak recommendation?

(c) Given that she does not receive the job offer, how likely should she feel that she received a strong recommendation? a moderate recommendation? a weak recommendation?

If two fair dice are rolled, what is the conditional probability that the first one lands on 6 given that the sum of the dice is i? Compute for all values of ibetween 2and12

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free