Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

There are 15 tennis balls in a box, of which nine have not previously been used. Three of the balls are randomly chosen, played with, and then returned to the box. Later, another three balls are randomly chosen from the box. Find the probability that none of these balls has ever been used.

Short Answer

Expert verified

The probability that none of those balls has ever been used is .0893

Step by step solution

01

Four Cases

Lets glance there at four likely choices of its first round.

Case 0:There are still no utilized balls displayed. p0=931553

Case1:There are still one utilized balls displayed. localid="1649414442532" p1=92×6153

Case 2:There are still two utilized balls displayed. localid="1649414452958" p2=9×62153

Case 3:There are still three utilized balls displayed.p3=63153

02

Probabilities and Outcomes

Every trial's odds and possibilities was appraised.

Case 0:p0=.1846,6new balls, 9used.

Case:1p1=.4747,7new balls,8used.

Case 2:p2=.2967,8new balls, 7used.

Case3:p3=.044,9new balls,6used.

03

Second Draw Probabilities

Simply raise the percentages of every instance by an occasion which no spent balls also willbe detected as in second draw, we add this together.

p063153+p173153+p283153+p393153

localid="1649414525255" .1846×.044+.4747×.0769+.2967×.1231+.044×.1846=.0893

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Example3a, what is the probability that someone has an accident in the second year given that he or she had no accidents in the first year?

A total of 500married working couples were polled about their annual salaries , with the following information resulting:

Wife Husband
Less than
\(25,000
More than
\)25,000
Less than\(25,000212198
More than\)25,0003654

For instance, in 36of the couples, the wife earned more and the husband earned less than \(25,000. If one of the couples is randomly chosen, what is

(a) the probability that the husband earns less than \)25,000?

(b) the conditional probability that the wife earns more than \(25,000given that the husband earns more than this amount?

(c) the conditional probability that the wife earns more than \)25,000given that the husband earns less than this amount?

Suppose we have 10 coins such that if the ith coin is flipped, heads will appear with probability i/10, i = 1, 2, ..., 10. When one of the coins is randomly selected and flipped, it shows heads. What is the conditional probability that it was the fifth coin

The color of a person’s eyes is determined by a single pair of genes. If they are both blue-eyed genes, then the person will have blue eyes; if they are both brown-eyed genes, then the person will have brown eyes; and if one of them is a blue-eyed gene and the other a brown-eyed gene, then the person will have brown eyes. (Because of the latter fact, we say that the brown-eyed gene is dominant over the blue-eyed one.) A newborn child independently receives one eye gene from each of its parents, and the gene it receives from a parent is equally likely to be either of the two eye genes of that parent. Suppose that Smith and both of his parents have brown eyes, but Smith’s sister has blue eyes.

(a) What is the probability that Smith possesses a blue eyed gene?

(b) Suppose that Smith’s wife has blue eyes. What is the probability that their first child will have blue eyes?

(c) If their first child has brown eyes, what is the probability that their next child will also have brown eyes?

Let A,B, and Cbe events relating to the experiment of rolling a pair of dice.

(a) If localid="1647938016434" P(A|C)>P(B|C)and localid="1647938126689" P(A|Cc)>P(B|Cc)either prove that localid="1647938033174" P(A)>P(B)or give a counterexample by defining events Band Cfor which that relationship is not true.

(b) If localid="1647938162035" P(A|C)>P(A|Cc)and P(B|C)>P(B|Cc)either prove that P(AB|C)>P(AB|Cc)or give a counterexample by defining events A,Band Cfor which that relationship is not true. Hint: Let Cbe the event that the sum of a pair of dice is 10; let Abe the event that the first die lands on 6; let Bbe the event that the second die lands on 6.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free