Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that5percent of men and0.25 percent of women are color blind. A color-blind person is chosen at random. What is the probability of this person being male? Assume that there are an equal number of males and females. What if the population consisted of twice as many males as females?

Short Answer

Expert verified

Determine the proportions of men and women in the defined populations. Apply the Bayes formula:
[2ex]P1=2021[lex]P2=4041

Step by step solution

01

Step1:Introduction

Considered events:

C - A person chosen at random is colorblind.

M -A male was chosen at random.

F - A female was chosen at random.

Given probabilities:

P(CM)=5%P(CF)=0.25%

P(M)=P(F)

II)P(M)=2×P(F)

02

Find men and women make up the whole population

Use the Bayes formula (obtained by breaking C into C M and C F )

P(MC)=P(CM)×P(M)P(CM)P(M)+P(CF)P(F)

The majority of the population is made up of men and women.

P(M)=P(F)P(M)=P(F)=0.5

P(MC)=0.05×0.50.05×0.5+0.0025×0.5

=2021

03

  Step3: The probability of this person being male 

The majority of the population is made up of men and women.

P(M)=2P(F)P(M)=23,P(F)=13

P(MC)=0.05×230.05×23+0.0025×13

=4041

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a certain village, it is traditional for the eldest son (or the older son in a two-son family) and his wife to be responsible for taking care of his parents as they age. In recent years, however, the women of this village, not wanting that responsibility, have not looked favorably upon marrying an eldest son.

(a) If every family in the village has two children, what proportion of all sons are older sons?

(b) If every family in the village has three children, what proportion of all sons are eldest sons?

Assume that each child is, independently, equally likely to be either a boy or a girl.

In any given year, a male automobile policyholder will make a claim with probability pmand a female policyholder will make a claim with probability localid="1646823185045" pf,where pfpm. The fraction of the policyholders that are male is α,0<α<1.A policyholder is randomly chosen. If Aidenotes the event that this policyholder will make a claim in the year i,show that

PA2A1>PA1

Give an intuitive explanation of why the preceding inequality is true.

On rainy days, Joe is late to work with probability .3; on nonrainy days, he is late with probability .1. With probability .7, it will rain tomorrow.

(a) Find the probability that Joe is early tomorrow.

(b) Given that Joe was early, what is the conditional probability that it rained?

A high school student is anxiously waiting to receive mail telling her whether she has been accepted to a certain college. She estimates that the conditional probabilities of receiving notification on each day of next week, given that she is accepted and that she is rejected, are as follows:

DayP(mail/accepted)P(mail/rejected)
Monday.15
.05
Tuesday.20
.10
Wednesday.25
.10
Thursday.15
.15
Friday.10
.20

She estimates that her probability of being accepted is .6.

(a) What is the probability that she receives mail on Monday?

(b) What is the conditional probability that she receives mail on Tuesday given that she does not receive mail on Monday?

(c) If there is no mail through Wednesday, what is the conditional probability that she will be accepted?

(d) What is the conditional probability that she will be accepted if mail comes on Thursday?

(e) What is the conditional probability that she will be accepted if no mail arrives that week?

A simplified model for the movement of the price of a stock supposes that on each day the stock’s price either moves up 1unit with probabilitypor moves down 1unit with probability 1p.The changes on different days are assumed to be independent.

(a) What is the probability that after2days the stock will be at its original price?

(b) What is the probability that after 3days the stock’s price will have increased by 1 unit?

(c) Given that after 3days the stock’s price has increased by 1 unit, what is the probability that it went up on the first day?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free