Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two fair dice are rolled. What is the conditional probability that at least one lands on 6 given that the dice land on different numbers?

Short Answer

Expert verified

The Conditional probability that atleast one dice lands on 6 given that the dice land on different numbers is 16.

Step by step solution

01

Concept and formula of probability.

Given : Tossing of two dice and numbers on both the dice are different.

Conditional Probability: Conditional Probability is the probability of an event occurring after another has occurred.

P(E/F)=P(EF)P(F).

Probability of an event =NumberoffavorableoutcomesTotalnumberofoutcomes

02

Calculation of Probability

The tossing of two dice result in 36 outcomes.

Let ' E' be the event that at least one dice lands on 6.

Sample space for events' E' are (1,6),(2,6),(3,6),(4,6),(5,6)&(6,6)

Let Fbe the event that both numbers on the dice are different.

Sample spaces for events are

(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5)

03

Calculation.

P(E/F)=P(Event Ewhen the event Fis given )localid="1648221210413" =P(FnF)P(F).

EF=common of event EandF=(1,6),(2,6),(3,6),(4,6)&(5,6). So

P(EF)=536,P(F)=3036.

Therefore,

localid="1648563788809" P(E/F)=P(FF)P(F)=5363036=536×3630=16

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The following method was proposed to estimate the number of people over the age of 50 who reside in a town of known population 100,000: “As you walk along the streets, keep a running count of the percentage of people you encounter who are over 50. Do this for a few days; then multiply the percentage you obtain by 100,000 to obtain the estimate.” Comment on this method. Hint: Let p denote the proportion of people in the town who are over 50. Furthermore, let α1 denote the proportion of time that a person under the age of 50 spends in the streets, and let α2 be the corresponding value for those over 50. What quantity does the method suggest estimate? When is the estimate approximately equal to p?

In Laplace’s rule of succession (Example 5e), suppose that the first nflips resulted in r heads and nrtails. Show that the probability that the(n+1)flip turns up heads is (r+1)/(n+2). To do so, you will have to prove and use the identity

01yn(1-y)mdy=n!m!(n+m+1)!

Hint: To prove the identity, let C(n,m)=01yn(1-y)mdy. Integrating by parts yields

C(n,m)=mn+1C(n+1,m-1)

Starting with C(n,0)=1/(n+1), prove the identity by induction on m.

Consider a school community of mfamilies, with niof them having ichildren, i=1,,k,i=1kni=mConsider the following two methods for choosing a child:

1. Choose one of the mfamilies at random and then randomly choose a child from that family.

2. Choose one of the i=1kinichildren at random.

Show that method 1is more likely than method 2to result

in the choice of a firstborn child.

Hint: In solving this problem, you will need to show that

i=1kinij=1knjji=1knij=1knj

To do so, multiply the sums and show that for all pairs i,j, the coefficient of the termninj is greater in the expression on the left than in the one on the right.

A recent college graduate is planning to take the first three actuarial examinations in the coming summer. She will take the first actuarial exam in June. If she passes that exam, then she will take the second exam in July, and if she also passes that one, then she will take the third exam in September. If she fails an exam, then she is not allowed to take any others. The probability that she passes the first exam is.9. If she passes the first exam, then the conditional probability that she passes the second one is .8, and if she passes both the first and the second exams, then the conditional probability that she passes the third exam is .7.

(a) What is the probability that she passes all three exams?

(b) Given that she did not pass all three exams, what is the conditional probability that she failed the second exam?

Prove the equivalence of Equations (5.11) and (5.12).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free