Chapter 3: 3.2 (page 97)
If two fair dice are rolled, what is the conditional probability that the first one lands on 6 given that the sum of the dice is ? Compute for all values of between and
Chapter 3: 3.2 (page 97)
If two fair dice are rolled, what is the conditional probability that the first one lands on 6 given that the sum of the dice is ? Compute for all values of between and
All the tools & learning materials you need for study success - in one app.
Get started for freeDie A has 4 red and 2 white faces, whereas die B has
2 red and 4 white faces. A fair coin is flipped once. If it
lands on heads, the game continues with die A; if it lands on tails, then die B is to be used.
(a) Show that the probability of red at any throw is 12
(b) If the first two throws result in red, what is the probability of red at the third throw?
(c) If red turns up at the first two throws, what is the probability
that it is die A that is being used?
A red die, a blue die, and a yellow die (all six-sided) are rolled. We are interested in the probability that the number appearing on the blue die is less than that appearing on the yellow die, which is less than that appearing on the red die. That is, with B, Y, and R denoting, respectively, the number appearing on the blue, yellow, and red die, we are interested in .
(a) What is the probability that no two of the dice land on the same number?
(b) Given that no two of the dice land on the same number, what is the conditional probability that ?
(c) What is ?
and are involved in a duel. The rules of the duel are that they are to pick up their guns and shoot at each other simultaneously. If one or both are hit, then the duel is over. If both shots miss, then they repeat the process. Suppose that the results of the shots are independent and that each shot of will hit with probability , and each shot of will hit with probability . What is
(a) the probability that is not hit?
(b) the probability that both duelists are hit? (c) the probability that the duel ends after the nth round of shots
(d) the conditional probability that the duel ends after the nth round of shots given that is not hit?
(e) the conditional probability that the duel ends after the nth round of shots given that both duelists are hit?
Two cards are randomly chosen without replacement from an ordinary deck of cards. Let be the event that both cards are aces, let be the event that the ace of spades is chosen, and let be the event that at least one ace is chosen. Find
(a)role="math" localid="1647789007426"
(b)
In Laplace’s rule of succession (Example 5e), suppose that the first flips resulted in r heads and tails. Show that the probability that theflip turns up heads is . To do so, you will have to prove and use the identity
Hint: To prove the identity, let . Integrating by parts yields
Starting with , prove the identity by induction on .
What do you think about this solution?
We value your feedback to improve our textbook solutions.