Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A certain town’s weather is classified each day as being rainy, sunny, or overcast, but dry. If it is rainy one day, then it is equally likely to be either sunny or overcast the following day. If it is not rainy, then there is one chance in three that the weather will persist in whatever state it is in for another day, and if it does change, then it is equally likely to become either of the other two states. In the long run, what proportion of days are sunny? What proportion are rainy?

Short Answer

Expert verified

In the long run 14proportion of days are rainy and 38proportion of days are sunny.

Step by step solution

01

Given Information

We need to find that town's what proportion are rainy and what proportion of days are sunny.

02

Simplify

The Markov chain has three states. Let state 1be rainy day, state 2be sunny day and state 3overcast. We have that the transition matrix is

P=01/21/21/31/31/31/31/31/3

Finding the stationary distribution. Solvingπ-πPwhich is

π1=+4π2+π3π2=12π1+13π2+13π3π3=12π1+13π2+13π3

Considering that it has to be π1+π2+π3=1,

π1=14,π2=π3=38

which meanslocalid="1648147438354" 14of days are rainy and38of days are sunny.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In transmitting a bit from location A to location B, if we let X denote the value of the bit sent at location A and Y denote the value received at location B, then H(X) − HY(X) is called the rate of transmission of information from A to B. The maximal rate of transmission, as a function of P{X = 1} = 1 − P{X = 0}, is called the channel capacity. Show that for a binary symmetric channel with P{Y = 1|X = 1} = P{Y = 0|X = 0} = p, the channel capacity is attained by the rate of transmission of information when P{X = 1} = 1 2 and its value is 1 + p log p + (1 − p)log(1 − p).

Customers arrive at a bank at a Poisson rate λ. Suppose that two customers arrived during the first hour. What is the probability that

(a) both arrived during the first 20 minutes?

(b) at least one arrived during the first 20 minutes?

Let X be a random variable that takes on 5 possible values with respective probabilities .35, .2, .2, .2, and .05. Also, let Y be a random variable that takes on 5 possible values with respective probabilities .05, .35, .1, .15, and .35. (a) Show that H(X) > H(Y). (b) Using the result of Problem 9.13, give an intuitive explanation for the preceding inequality.

A coin having probability p = 2 3 of coming up heads is flipped 6 times. Compute the entropy of the outcome of this experiment.

Suppose that in Problem 9.2, Al is agile enough to escape from a single car, but if he encounters two or more cars while attempting to cross the road, then he is injured. What is the probability that he will be unhurt if it takes him s seconds to cross? Do this exercise for s = 5, 10, 20, 30.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free