Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A random variable can take on any of n possible values x1, ... , xn with respective probabilities p(xi), i = 1, ... , n. We shall attempt to determine the value of X by asking a series of questions, each of which can be answered “yes” or “no.” For instance, we may ask “Is X = x1?” or “Is X equal to either x1 or x2 or x3?” and so on. What can you say about the average number of such questions that you will need to ask to determine the value of X?

Short Answer

Expert verified

The average number of questions to determine the value of XisEX-n2n

Step by step solution

01

Given Information

We have to find the average number of questions that you will need to ask to determine the value of X.

02

Simplify

Mark that the answer to a particular question is 12i.e.

PYes=PNo=12

which meansPX=k=12kfor k=1,,n. So, the average number of questions is

localid="1648130867761" EX=k=1nk12k

To calculate, multiply it by 12.

localid="1648130836360" 12EX=k=1nk12k+1

Subtracting that from the expression in 1, we have that

localid="1648130797034" 12EX=k=1nk12k+1-n.12n+1

Using the formula localid="1648133543693" k=1n12k=12.1-0.5n+11-0.5to obtain that the final answer. That is

EX-n2n

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that for any discrete random variable Xand functionf

H(f(X))H(X)

This problem refers to Example 2f.

(a) Verify that the proposed value of πj satisfies the necessary equations.

(b) For any given molecule, what do you think is the (limiting) probability that it is in urn 1?

(c) Do you think that the events that molecule j, j Ú 1, is in urn 1 at a very large time would be (in the limit) independent?

(d) Explain why the limiting probabilities are as given.

A certain person goes for a run each morning. When he leaves his house for his run, he is equally likely to go out either the front or the back door, and similarly, when he returns, he is equally likely to go to either the front or the back door. The runner owns 5 pairs of running shoes, which he takes off after the run at whichever door he happens to be. If there are no shoes at the door from which he leaves to go running, he runs barefooted. We are interested in determining the proportion of time that he runs barefooted. (a) Set this problem up as a Markov chain. Give the states and the transition probabilities. (b) Determine the proportion of days that he runs barefooted.

Suppose that whether it rains tomorrow depends on past weather conditions only through the past 2 days. Specifically, suppose that if it has rained yesterday and today, then it will rain tomorrow with probability .8; if it rained yesterday but not today, then it will rain tomorrow with probability .3; if it rained today but not yesterday, then it will rain tomorrow with probability .4; and if it has not rained either yesterday or today, then it will rain tomorrow with probability .2. What proportion of days does it rain?

In transmitting a bit from location A to location B, if we let X denote the value of the bit sent at location A and Y denote the value received at location B, then H(X) − HY(X) is called the rate of transmission of information from A to B. The maximal rate of transmission, as a function of P{X = 1} = 1 − P{X = 0}, is called the channel capacity. Show that for a binary symmetric channel with P{Y = 1|X = 1} = P{Y = 0|X = 0} = p, the channel capacity is attained by the rate of transmission of information when P{X = 1} = 1 2 and its value is 1 + p log p + (1 − p)log(1 − p).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free