Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Events occur according to a Poisson process with rate λ = 3 per hour. (a) What is the probability that no events occur between times 8 and 10 in the morning? (b) What is the expected value of the number of events that occur between times 8 and 10 in the morning? (c) What is the expected time of occurrence of the fifth event after 2 P.M.?

Short Answer

Expert verified

The answer of each parts is

(a) e-6

(b) 6

(c) 3.40P.M.

Step by step solution

01

Part (a) Step 1: Given Information

We need to find the probability that no events occur between times 8and 10in the morning.

02

Part (a) Step 2: Explanation

We are taking random variable N2. So, the required probability is

P(N(2)=0)=e-6N2

03

Part (b) Step 1: Given Information

We need to find the expected value of the number of events that occur between times 8and 10in the morning.

04

Part (b) Step 2: Explanation

The number of events expected is 6as we haveNis a poisson pocess with rate λ=3, so N(2)has poisson distribution with rate 2.

λ=2·3=6

05

Part (c) Step 1: Given Information

We need to find the expected time of occurrence of the fifth event after 2P.M.

06

Part (c) Step 2: Explanation

The times of inter-arrivals in possion have Exponential distribution with parameter λ=3.Hence, the average time of five arrivals is given as

5E(T)=53

Hence, the time of fifth arrival after 2P.Mis3:40P.M.

λ=3

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A certain person goes for a run each morning. When he leaves his house for his run, he is equally likely to go out either the front or the back door, and similarly, when he returns, he is equally likely to go to either the front or the back door. The runner owns 5 pairs of running shoes, which he takes off after the run at whichever door he happens to be. If there are no shoes at the door from which he leaves to go running, he runs barefooted. We are interested in determining the proportion of time that he runs barefooted. (a) Set this problem up as a Markov chain. Give the states and the transition probabilities. (b) Determine the proportion of days that he runs barefooted.

A random variable can take on any of n possible values x1, ... , xn with respective probabilities p(xi), i = 1, ... , n. We shall attempt to determine the value of X by asking a series of questions, each of which can be answered “yes” or “no.” For instance, we may ask “Is X = x1?” or “Is X equal to either x1 or x2 or x3?” and so on. What can you say about the average number of such questions that you will need to ask to determine the value of X?

A pair of fair dice is rolled. Let

X=1ifthesumofthediceis60otherwise

and let Y equal the value of the first die. Compute (a) H(Y), (b) HY(X), and (c) H(X, Y).

Let X be a random variable that takes on 5 possible values with respective probabilities .35, .2, .2, .2, and .05. Also, let Y be a random variable that takes on 5 possible values with respective probabilities .05, .35, .1, .15, and .35. (a) Show that H(X) > H(Y). (b) Using the result of Problem 9.13, give an intuitive explanation for the preceding inequality.

Cars cross a certain point in the highway in accordance with a Poisson process with rate λ = 3 per minute. If Al runs blindly across the highway, what is the probability that he will be uninjured if the amount of time that it takes him to cross the road is s seconds? (Assume that if he is on the highway when a car passes by, then he will be injured.) Do this exercise for s = 2, 5, 10, 20.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free