This exercise is concerned with proofs. Let \(\mathbf{f}(\mathbf{x})\) be
Lipschitz continuously differentiable in an open convex set \(\mathcal{D}
\subset \mathcal{R}^{n}\), i.e., there is a constant \(\gamma \geq 0\) such that
$$
\|J(\mathbf{x})-J(\mathbf{y})\| \leq \gamma\|\mathbf{x}-\mathbf{y}\| \quad
\forall \mathbf{x}, \mathbf{y} \in \mathcal{D}
$$
where \(J\) is the \(n \times n\) Jacobian matrix of \(\mathbf{f}\). It is possible
to show that if \(\mathbf{x}\) and \(\mathbf{x}+\mathbf{p}\) are in \(\mathcal{D}\),
then
$$
\mathbf{f}(\mathbf{x}+\mathbf{p})=\mathbf{f}(\mathbf{x})+\int_{0}^{1}
J(\mathbf{x}+\tau \mathbf{p}) \mathbf{p} d \tau
$$
(a) Assuming the above as given, show that
$$
\|\mathbf{f}(\mathbf{x}+\mathbf{p})-\mathbf{f}(\mathbf{x})-J(\mathbf{x})
\mathbf{p}\| \leq \frac{\gamma}{2}\|\mathbf{p}\|^{2}
$$
(b) Suppose further that there is a root \(\mathbf{x}^{*} \in \mathcal{D}\)
satisfying
$$
\mathbf{f}\left(\mathbf{x}^{*}\right)=\mathbf{0}, \quad
J\left(\mathbf{x}^{*}\right) \text { nonsingular. }
$$
Show that for \(\mathbf{x}_{0}\) sufficiently close to \(\mathbf{x}^{*}\),
Newton's method converges quadratically.