Chapter 7: Problem 9
Let \(\alpha\) be a scalar, and consider the iterative scheme $$ \mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha\left(\mathbf{b}-A \mathbf{x}_{k}\right) $$ This is the gradient descent method with a fixed step size \(\alpha\). (a) If \(A=M-N\) is the splitting associated with this method, state what \(M\) and the iteration matrix \(T\) are. (b) Suppose \(A\) is symmetric positive definite and its eigenvalues are \(\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}>0 .\) i. Derive a condition on \(\alpha\) that guarantees convergence of the scheme to the solution \(\mathbf{x}\) for any initial guess. ii. Express the condition on \(\alpha\) in terms of the spectral condition number of \(A, \kappa(A)\). iii. Show the best value for the step size in terms of maximizing the speed of convergence is $$ \alpha=\frac{2}{\lambda_{1}+\lambda_{n}} $$ Find the spectral radius of the iteration matrix in this case, and express it in terms of the condition number of \(A\). (c) Determine whether the following statement is true or false. Justify your answer. "If \(A\) is strictly diagonally dominant and \(\alpha=1\), then the iterative scheme converges to the solution for any initial guess \(\mathrm{x}_{0} .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.