Chapter 7: Problem 24
Let \(A\) be a general nonsymmetric nonsingular square matrix, and consider the following two alternatives. The first is applying GMRES to solve the linear system \(A \mathbf{x}=\mathbf{b} ;\) the second is applying CG to the normal equations $$ A^{T} A \mathbf{x}=A^{T} \mathbf{b} $$ We briefly discussed this in Section \(7.5\); the method we mentioned in that context was CGLS. (a) Suppose your matrix \(A\) is nearly orthogonal. Which of the two solvers is expected to converge faster? (b) Suppose your matrix is block diagonal relative to \(2 \times 2\) blocks, where the \(j\) th block is given by $$ \left(\begin{array}{cc} 1 & j-1 \\ 0 & 1 \end{array}\right) $$ with \(j=1, \ldots, n / 2\). Which of the two solvers is expected to converge faster? [Hint: Consider the eigenvalues and the singular values of the matrices.]
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.