Chapter 7: Problem 20
(a) Write a program for solving the linear least squares problems that arise throughout the iterations of the GMRES method, using Givens rotations, where the matrix is a nonsquare \((k+1) \times k\) upper Hessenberg matrix. Specifically, solve $$ \min _{\mathbf{z}}\left\|\rho e_{1}-H_{k+1, k} \mathbf{z}\right\| $$ Provide a detailed explanation of how this is done in your program, and state what \(Q\) and \(R\) in the associated QR factorization are. (b) Given \(H_{k+1, k}\), suppose we perform a step of the Arnoldi process. As a result, we now have a new upper Hessenberg matrix \(H_{k+2, k+1}\). Describe the relationship between the old and the new upper Hessenberg matrices and explain how this relationship can be used to solve the new least squares problem in an economical fashion. (c) The least squares problems throughout the iterations can be solved using a QR decomposition approach. Show that the upper triangular factor cannot be singular unless \(\mathbf{x}_{k}=\mathbf{x}\), the exact solution.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.