Chapter 7: Problem 12
Consider the linear system \(A \mathbf{x}=\mathbf{b}\), where \(A\) is a symmetric matrix. Suppose that \(M-N\) is a splitting of \(A\), where \(M\) is symmetric positive definite and \(N\) is symmetric. Show that if \(\lambda_{\min }(M)>\rho(N)\), then the iterative scheme \(M \mathbf{x}_{k+1}=N \mathbf{x}_{k}+\mathbf{b}\) converges to \(\mathbf{x}\) for any initial guess \(\mathbf{x}_{0}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.