Chapter 3: Problem 3
Consider the fixed point iteration \(x_{k+1}=g\left(x_{k}\right), k=0,1, \ldots\), and let all the assumptions of the Fixed Point Theorem hold. Use a Taylor's series expansion to show that the order of convergence depends on how many of the derivatives of \(g\) vanish at \(x=x^{*}\). Use your result to state how fast (at least) a fixed point iteration is expected to converge if \(g^{\prime}\left(x^{*}\right)=\cdots=\) \(g^{(r)}\left(x^{*}\right)=0\), where the integer \(r \geq 1\) is given.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.