Chapter 11: Problem 7
Suppose you are asked to construct a clamped cubic spline interpolating the following set of data: $$ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline x & 1.2 & 1.4 & 1.6 & 1.67 & 1.8 & 2.0 & 2.1 & 2.2 \\ \hline f(x) & 4.561 & 5.217 & 5.634 & 5.935 & 6.562 & 6.242 & 5.812 & 5.367 \\\ \hline \end{array} $$ The function underlying these data points is unknown, but clamped cubic splines require interpolation of the first derivative of the underlying function at the end points \(x_{0}=1.2\) and \(x_{7}=2.2 .\) Select the formula in the following list that would best assist you to construct the clamped cubic spline interpolating this set of data: $$ \begin{aligned} &\text { i. } f^{\prime}\left(x_{0}\right)=\frac{1}{2 \hbar}\left(-f\left(x_{0}-h\right)+f\left(x_{0}+h\right)\right)-\frac{h^{2}}{6} f^{(3)}(\xi) \\ &\text { ii. } f^{\prime}\left(x_{n}\right)=\frac{1}{2 h}\left(f\left(x_{n}-2 h\right)-4 f\left(x_{n}-h\right)+3 f\left(x_{n}\right)\right)+\frac{h^{2}}{3} f^{(3)}(\xi) \\ &\text { iii. } f^{\prime}\left(x_{0}\right)=\frac{1}{12 h}\left(f\left(x_{0}-2 h\right)-8 f\left(x_{0}-h\right)+8 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)\right)+\frac{h^{4}}{30} f^{(5)}(\xi) \\ &\text { iv. } f^{\prime}\left(x_{n}\right)=\frac{1}{12 h}\left(3 f\left(x_{n}-4 h\right)-16 f\left(x_{n}-3 h\right)+36 f\left(x_{n}-2 h\right)-48 f\left(x_{n}-h\right)\right. \\ &\left.\quad+25 f\left(x_{n}\right)\right)+\frac{h^{4}}{5} f^{(5)}(\xi) \\ &\text { v. } f^{\prime}\left(x_{0}\right)=\frac{1}{180 h}\left(-441 f\left(x_{0}\right)+1080 f\left(x_{0}+h\right)-1350 f\left(x_{0}+2 h\right)\right. \\ &\quad+1200 f\left(x_{0}+3 h\right)-675 f\left(x_{0}+4 h\right)+216 f\left(x_{0}+5 h\right) \\ &\left.\quad-30 f\left(x_{0}+6 h\right)\right)+\frac{h^{6}}{7} f^{(7)}(\xi) \end{aligned} $$ Provide an explanation supporting your choice of formula.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.