Chapter 7: Q79 E (page 305) URL copied to clipboard! Now share some education! Find the deflection y(x) of a cantilever beam embedded at its left end and free at its right end when the load is as given in Example 10. Short Answer Expert verified The deflection of a of a cantilever beam embedded at its left end and free at its right end isy(x)=w0EI5!x5-2Lw0EI6!x6-w0EI5!x-L25Ux-L2+w0EI6!2Lx-L26Ux-L2+12!w0EIL364x2+13!-w0EIL12x3 Step by step solution 01 Define Laplace transform. When specific initial conditions are supplied, especially when the initial values are zero, the Laplace transform is a handy method of solving certain types of differential equations. Laplace transform Lof a function f(t)is defined as L{f(t)}=∫e-st0ℕf(t)dtIn words we can describe this expression as the Laplace transform of equals function F of S .L{f(t)}=F(s) 02 Find the piecewise function. A piecewise function is defined asf(t)=gt,0⩽t<aht,t⩾aIt can be expressed asf(t)=g(t)-g(t)U(t-a)+h(t)U(t-a)The function w(x)is expressed asw(x)=w01-2Lx-w01-2LxUx-L2EId4ydx4=w(x)EId4ydx4=w01-2Lx-w01-2LxUx-L2Hence the piecewise function of w(x) isEId4ydx4=w01-2Lx-w01-2LxUx-L2 03 Find the Laplace transform for the given equation. Take the Laplace transform on both sides of EId4ydx4=w01-2Lx-w01-2LxUx-L2Ltn=n!sn+1,L{1}=1sEILd4ydx4=w0L1-2Lx-w0L1-2LxUx-L2=w01s-2L1s2-w0e-L2s1s-2L1s2Hence, the Laplace transform of the equationEId4ydx4=w01-2Lx-w01-2LxUx-L2isw01s-2L1s2-w0e-L2s1s-2L1s2 04 Find the value We know that,Ld4ydx4=s4Y(s)-s3y(0)-s2y'(0)-sy''(0)-y'''(0)y(0)=0,y'(0)=0So,s4Y(s)-s3y(0)-s2y'(0)-sy''(0)-y'''(0)=w0EI1s-2L1s2-w0EIe-L2s1s-2L1s2s4Y(s)-sy''(0)-y'''(0)=w0EI1s-2L1s2-w0EIe-L2s1s-2L1s2Substitute y''(0)=c1,y'''(0)=c2in the above equation.s4Y(s)-sc1-c2=w0EI1s-2L1s2-w0EIe-L2s1s-2L1s2Y(s)=w0EI1s6-2Lw0EI1s7-w0EIe-L2s1s6+w0EI2Le-L2s1s7+c1s3+c2s4Hence the value of Y(s)=w0EI1s6-2Lw0EI1s7-w0EIe-L2s1s6+w0EI2Le-L2s1s7+c1s3+c2s4 05 Find the inverse of the Laplace value. Take inverse The Laplace transform on both sides ofY(s)=w0EI1s6-2Lw0EI1s7-w0EIe-L2s1s6+w0EI2Le-L2s1s7+c1s3+c2s4L-1{Y(s)}=w0EI5!L-15!s6-2Lw0EI6!L-16!s7-w0EI5!L-1e-L2s5!s6+w0EI6!2LL-1e-L2s6!s7+c12!L-12!s2+1+c23!L-13!s3+1=w0EI5!x5-2Lw0EI6!x6-w0EI5!x-L25Ux-L2+w0EI6!2Lx-L26Ux-L2+c12!x2+c23!x3tn=L-1n!sn+1y(t)=w0EI5!x5-2Lw0EI6!x6-w0EI5!x-L25Ux-L2+w0EI6!2Lx-L26Ux-L2+c12!x2+c23!x3The inverse Laplace transform is y(t)=w0EI5!x5-2Lw0EI6!x6-w0EI5!x-L25Ux-L2+w0EI6!2Lx-L26Ux-L2+c12!x2+c23!x3 06 Find the first derivative Next we find the constants. The first derivative isy'(x)=5w0EI5!x4-2L6w0EI6!x5-5w0EI5!x-L24Ux-L2+6w0EI6!2Lx-L25Ux-L2+2c12!x+3c23!x2=w0EI4!x4-2Lw0EI5!x5-w0EI4!x-L24Ux-L2+w0EI5!2Lx-L25Ux-L2+c1x+c22!x2Hence the first derivative isw0EI4!x4-2Lw0EI5!x5-w0EI4!x-L24Ux-L2+w0EI5!2Lx-L25Ux-L2+c1x+c22!x2 07 Find the second and third derivative. The second derivative isy''(x)=4w0EI4!x3-2L5w0EI5!x4-4w0EI4!x-L23Ux-L2+5w0EI5!2Lx-L24Ux-L2+c1+2c22!x=w0EI3!x3-2Lw0EI4!x4-w0EI3!x-L23Ux-L2+w0EI4!2Lx-L24Ux-L2+c1+c2xThe third derivative isy'''(x)=3w0EI3!x2-2L4w0EI4!x3-3w0EI3!x-L22Ux-L2+4w0EI4!2Lx-L23Ux-L2+c2=w0EI2!x2-2Lw0EI3!x3-w0EI2!x-L22Ux-L2+w0EI3!2Lx-L23Ux-L2+c2Hence the second and third derivative is w0EI3!x3-2Lw0EI4!x4-w0EI3!x-L23Ux-L2+w0EI4!2Lx-L24Ux-L2+c1+c2xw0EI2!x2-2Lw0EI3!x3-w0EI2!x-L22Ux-L2+w0EI3!2Lx-L23Ux-L2+c2respectively 08 Finding the value of deflection. Applying the condition y'''(L)=0y'''(L)=w0EI2!L2-2Lw0EI3!L3-w0EI2!L-L22UL-L2+w0EI3!2LL-L23UL-L2+c20=w0EI2!L2-2Lw0EI3!L3-w0EI2!L22+w0EI3!2LL23+c2UL-L2=10=12w0EIL2-26w0EIL2-18w0EIL2+124w0EIL2+c2c2=-w0EIL12Applying the condition y'''(L)=0y''(L)=w0EI3!L3-2Lw0EI4!L4-w0EI3!L-L23UL-L2+w0EI4!2LL-L24UL-L2+c1+c2L0=16w0EIL3-224w0EIL3-148w0EIL3+124·8w0EIL3+c1+-112w0EIL2L0=16w0EIL3-224w0EIL3-148w0EIL3+124·8w0EIL3+c1-112w0EIL3c1=w0EIL364Substitute the value of the constants in y(t)=w0EI5!x5-2Lw0EI6!x6-w0EI5!x-L25Ux-L2+w0EI6!2Lx-L26Ux-L2+c12!x2+c23!x3y(x)=w0EI5!x5-2Lw0EI6!x6-w0EI5!x-L25Ux-L2+w0EI6!2Lx-L26Ux-L2+12!w0EIL364x2+13!-w0EIL12x3Hence the value of deflection is y(x)=w0EI5!x5-2Lw0EI6!x6-w0EI5!x-L25Ux-L2+w0EI6!2Lx-L26Ux-L2+12!w0EIL364x2+13!-w0EIL12x3 Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!