Apply inverse Laplace transform to each side.
\({\mathcal{L}^{ - 1}}\{ Y(s)\} = {\mathcal{L}^{ - 1}}\left\{ {\frac{{3s - 1}}{{s(s - 3)(s - 2)}}} \right\}\)
\( = - \frac{1}{6}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\} + \frac{8}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{(s - 3)}}} \right\} - \frac{5}{2}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{s - 2}}} \right\}\)
\( = - \frac{1}{6} + \frac{8}{3}{e^{3t}} - \frac{5}{2}{e^{2t}}\)
Therefore,
\(y(t) = - \frac{1}{6} + \frac{8}{3}{e^{3t}} - \frac{5}{2}{e^{2t}}\)
Apply inverse Laplace transform to each side.
\({\mathcal{L}^{ - 1}}\{ X(s)\} {\rm{ }} = {\mathcal{L}^{ - 1}}\left\{ {\frac{{ - s - 3}}{{s(s - 3)(s - 2)}}{\rm{ }}} \right\}\)
\( = - \frac{1}{2}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\} - 2{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{(s - 3)}}} \right\} + \frac{5}{2}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{s - 2}}} \right\}\)
\( = - \frac{1}{2} - 2{e^{3t}} + \frac{5}{2}{e^{2t}}\)
Therefore,
\(x(t) = - \frac{1}{2} - 2{e^{3t}} + \frac{5}{2}{e^{2t}}\)
Result
\(x(t) = - \frac{1}{2} - 2{e^{3t}} + \frac{5}{2}{e^{2t}}\)
\(y(t) = - \frac{1}{6} + \frac{8}{3}{e^{3t}} - \frac{5}{2}{e^{2t}}\)