Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 1-12 Use the Laplace transform to solve the given system of differential equations.

4.dxdt+3x+dydt=1dxdt-x+dydt-y=etx(0)=0,y(0)=0

Short Answer

Expert verified

The solution of the given system of differential equations is,

x(t)=-13(et+tet)+13y(t)=13et+43tet-13

Step by step solution

01

Definition of Laplace Transform

Let be a function defined for. Then the integral

L{f(t)}=0xe-xtf(t)dt

is said to be the Laplace transform of , provided that the integral converges.

02

Use Laplace Transform

We know that

Lx'=sL{x}-x(0)Ly'=sL{y}-y(0)TaketheLaplacetransformonbothsidesofeachgivendifferentialequationL1=L{x'}+3L{x}+L{y'}L{et}=L{x'}-L{x}+L{y'}-L{y}Substitutetheequation1and2,wegetL1=sL{x}-x(0)+3L{x}+sL{y}-y(0)L{et}=sL{x}-x(0)-L{x}+sL{y}-y(0)-L{y}Wehave,X(0)=0,Y(0)=0,soL1=sL{x}+3L{x}+sL{y}L{et}=sL{x}-L{x}+sL{y}-L{y}DenoteL{x}=X(s)andL{y}=Y(s)intheabovesystem.1s=sX(s)+3X(s)+sY(s)1s-1=sX(s)-X(s)+sY(s)-Y(s)

03

Simplify the equations

The system simplifies the form.

s+3Xs+sYs=1s---(3)Xs+Ys=1(s-1)2---(4)Multiplyequation3by-1andequation4byS+3.-s+3Xs-sYs=-1s---(5)(s+3)Xs+(s+3)Ys=(s+3)(s-1)2---(6)Nowadd5and6equationstoget.-s+3Xs-sYs+(s+3)Xs+(s+3)Ys=-1s+(s+3)(s-1)23Y(s)=(s+3)(s-1)2-1sY(s)=(s+3)3(s-1)2-13sY(s)=s3(s-1)2+1(s-1)2-13s

04

Use Inverse Laplace Transform

Apply inverse Laplace transform to each side.

\({\mathcal{L}^{ - 1}}\{ Y(s)\} = {\mathcal{L}^{ - 1}}\left\{ {\frac{s}{{3{{(s - 1)}^2}}} + \frac{1}{{{{(s - 1)}^2}}} - \frac{1}{{3s}}} \right\}\)

\( = \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{s}{{{{(s - 1)}^2}}}} \right\} + {\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - 1)}^2}}}} \right\} - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\}\)

\( = \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{(s - 1)}}} \right\} + \frac{4}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - 1)}^2}}}} \right\} - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\}\)

\(\mathop = \limits^{(**)} \frac{1}{3}{e^t} + \frac{4}{3}t{e^t} - \frac{1}{3}\)

\(\left( {{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\} = 1,\;\;\;{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{s - a}}} \right\} = {e^{at}},{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - a)}^2}}}} \right\} = t{e^{at}}} \right)\;\;\;(**)\)

Therefore,

\(y(t) = \frac{1}{3}{e^t} + \frac{4}{3}t{e^t} - \frac{1}{3}\)

Now, multiply equation (3) by-1 and equation (4) bys.

\( - \left( {s + 3} \right){\rm{ }}X\left( s \right) - sY\left( s \right){\rm{ }} = - \frac{1}{s}{\rm{ }}\)------------ (7)

\(sX\left( s \right){\rm{ + s}}Y\left( s \right){\rm{ }} = \frac{s}{{{{(s - 1)}^2}}}\)------------ (8)

Now add (7) and (8) equations to get.

\(\begin{aligned}{l} - \left( {s + 3} \right){\rm{ }}X\left( s \right) - sY\left( s \right){\rm{ + }}sX\left( s \right){\rm{ + s}}Y\left( s \right){\rm{ }} = \frac{s}{{{{(s - 1)}^2}}} - \frac{1}{s}{\rm{ }}\\{\rm{ - 3X(s) = }}\frac{s}{{{{(s - 1)}^2}}} - \frac{1}{s}{\rm{ }}\\X(s) = - \frac{s}{{3{{(s - 1)}^2}}} + \frac{1}{{3s}}{\rm{ }}\end{aligned}\)

Apply inverse Laplace transform to each side.

\({\mathcal{L}^{ - 1}}\{ X(s)\} {\rm{ }} = {\mathcal{L}^{ - 1}}\left\{ { - \frac{s}{{3{{(s - 1)}^2}}} + \frac{1}{{3s}}{\rm{ }}} \right\}\)

\( = - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{s}{{{{(s - 1)}^2}}}} \right\} + \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}{\rm{ }}} \right\}\)

\( = - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{(s - 1)}}} \right\} - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - 1)}^2}}}} \right\} + \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}{\rm{ }}} \right\}\)

\(\mathop = \limits^{(**)} - \frac{1}{3}({e^t} + t{e^t}) + \frac{1}{3}\)

\(\left( {{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\} = 1,{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{(s - a)}}} \right\} = {e^{at}},\;\;\;{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - a)}^2}}}} \right\} = t{e^{at}}} \right)\;\;\;(**)\)

Therefore,x(t)=-13(et+tet)+13Resultx(t)=-13(et+tet)+13y(t)=13et+43tet-13

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free