Apply inverse Laplace transform to each side.
\({\mathcal{L}^{ - 1}}\{ Y(s)\} = {\mathcal{L}^{ - 1}}\left\{ {\frac{s}{{3{{(s - 1)}^2}}} + \frac{1}{{{{(s - 1)}^2}}} - \frac{1}{{3s}}} \right\}\)
\( = \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{s}{{{{(s - 1)}^2}}}} \right\} + {\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - 1)}^2}}}} \right\} - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\}\)
\( = \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{(s - 1)}}} \right\} + \frac{4}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - 1)}^2}}}} \right\} - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\}\)
\(\mathop = \limits^{(**)} \frac{1}{3}{e^t} + \frac{4}{3}t{e^t} - \frac{1}{3}\)
\(\left( {{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\} = 1,\;\;\;{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{s - a}}} \right\} = {e^{at}},{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - a)}^2}}}} \right\} = t{e^{at}}} \right)\;\;\;(**)\)
Therefore,
\(y(t) = \frac{1}{3}{e^t} + \frac{4}{3}t{e^t} - \frac{1}{3}\)
Now, multiply equation (3) by-1 and equation (4) bys.
\( - \left( {s + 3} \right){\rm{ }}X\left( s \right) - sY\left( s \right){\rm{ }} = - \frac{1}{s}{\rm{ }}\)------------ (7)
\(sX\left( s \right){\rm{ + s}}Y\left( s \right){\rm{ }} = \frac{s}{{{{(s - 1)}^2}}}\)------------ (8)
Now add (7) and (8) equations to get.
\(\begin{aligned}{l} - \left( {s + 3} \right){\rm{ }}X\left( s \right) - sY\left( s \right){\rm{ + }}sX\left( s \right){\rm{ + s}}Y\left( s \right){\rm{ }} = \frac{s}{{{{(s - 1)}^2}}} - \frac{1}{s}{\rm{ }}\\{\rm{ - 3X(s) = }}\frac{s}{{{{(s - 1)}^2}}} - \frac{1}{s}{\rm{ }}\\X(s) = - \frac{s}{{3{{(s - 1)}^2}}} + \frac{1}{{3s}}{\rm{ }}\end{aligned}\)
Apply inverse Laplace transform to each side.
\({\mathcal{L}^{ - 1}}\{ X(s)\} {\rm{ }} = {\mathcal{L}^{ - 1}}\left\{ { - \frac{s}{{3{{(s - 1)}^2}}} + \frac{1}{{3s}}{\rm{ }}} \right\}\)
\( = - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{s}{{{{(s - 1)}^2}}}} \right\} + \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}{\rm{ }}} \right\}\)
\( = - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{(s - 1)}}} \right\} - \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - 1)}^2}}}} \right\} + \frac{1}{3}{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}{\rm{ }}} \right\}\)
\(\mathop = \limits^{(**)} - \frac{1}{3}({e^t} + t{e^t}) + \frac{1}{3}\)
\(\left( {{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{s}} \right\} = 1,{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{(s - a)}}} \right\} = {e^{at}},\;\;\;{\mathcal{L}^{ - 1}}\left\{ {\frac{1}{{{{(s - a)}^2}}}} \right\} = t{e^{at}}} \right)\;\;\;(**)\)