Chapter 7: Q7.6-2E (page 327) URL copied to clipboard! Now share some education! In Problems 1-12 Use the Laplace transform to solve the given system of differential equations.2.dxdt=2y+etdydt=8x-tx(0)=1,y(0)=1 Short Answer Expert verified The solution of the given system of differential equations is,x(t)=t8-115et+173192e4t+53320e-4ty(t)=116-815et+17396e4t-53160e-4t Step by step solution 01 Definition of Laplace Transform Let be a function defined fort≥0. Then the integral L{f(t)}=∫0xe-xtf(t)dt is said to be the Laplace transform of f, provided that the integral converges. 02 Use Laplace Transform IfX(s)=L{x(t)}andY(s)=L{y(t)}, then after transforming each of the given equations, we obtain,dxdt=2y+etx'-2y=etsX(s)-1-2Y(s)=1s-1sX(s)-2Y(s)=1s-1+1..........(1)And,dydt=8x-ty'-8x=-tsY(s)-y(0)-8X(s)=-1s2sY(s)-8X(s)=1-1s2..........(2) 03 Simplify the equations Now multiply the first equation by 8 and equation (2) with s adding both, we get,8(sX(s)-2Y(s))+s(sY(s)-8X(s))=8(1s-1+1)+s(1-1s2)-16Y(s)+s2Y(s)=8+8s-1+s-1s(s+4)(s-4)Y(s)=8(s)(s-1)+8s+s(s)(s-1)-(s-1)s(s-1)(s-4)(s+4)Y(s)=s3+7s2-s+1s(s-1)(s-4)(s+4)Theaboveequationcanbewrittenas,Y(s)=As+Bs-1+Cs-4+Ds+4Y(s)=A(s-1)(s-4)(s+4)+B(s)(s-4)(s+4)+C(s)(s-1)(s+4)+D(s)(s-1)(s-4)s(s-1)(s-4)(s+4)ComparingboththenumeratorsofYs,wehave,s3+7s2-s+1=A(s-1)(s-4)(s+4)+B(s)(s-4)(s+4)+C(s)(s-1)(s+4)+D(s)(s-1)(s-4) 04 Step 4:To find the constant values. Now, putting S=0, we have the value of A to be,03+7(0)2-0+1=A(0-1)(0-4)(0+4)+B(0)(0-4)(0+4)+C(0)(0-1)(0+4)+D(0)(0-1)(0-4)1=A(16)+0+0+0A=116Similarly,puttingS=1,wehavethevalueofBtobe,13+7(1)2-1+1=A(1-1)(1-4)(1+4)+B(1)(1-4)(1+4)+C(1)(1-1)(1+4)+D(1)(1-1)(1-4)B=-815Similarly,puttingS=4,wehavethevalueofCtobe,43+7(4)2-4+1=A(4-1)(4-4)(4+4)+B(4)(4-4)(4+4)+C(4)(4-1)(4+4)+D(4)(4-1)(4-4)C=17396Similarly,puttingS=-4,wehavethevalueDoftobe,-43+7(-4)2+4+1=A(-4-1)(-4-4)(-4+4)+B(-4)(-4-4)(-4+4)+C(-4)(-4-1)(-4+4)+D(-4)(-4-1)(-4-4)D=-53160Therefore,wehavethefunctionas,Y(s)=1161s-8151s-1+173961s-4-531601s+4 05 Step 5:To find the solutions. Now, as we assumedY(s)=L{y(t)}, we can thus write that,role="math" localid="1664183542780" y(t)=L1{Y(s)}=L1{1161s-8151s-1+173961s-4-531601s+4}=116L1{1s}-815L1{1s-1}+17396L1{1s-4}-53160L1{1s+4}y(t)=116-815et+17396e4t-53160e-4tFromthegivensystemofequationswehave,dydt=8x-t8x(t)=dy(t)dt+tx(t)=t8+18dy(t)dtx(t)=t8-115et+173192e4t+53320e-4tResult:x(t)=t8-115et+173192e4t+53320e-4ty(t)=116-815et+17396e4t-53160e-4t Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!