Chapter 7: Q7.6-13E (page 327)
Solve system (1) when
Short Answer
Step by step solution
Given Information.
Apply Laplace Transform
Replace the given values to get
Take Laplace to transform to get
We know that
\(\begin{aligned}{*{20}{c}}{L\left\{ {x_1^{\prime \prime }} \right\} = {s^2}L\left\{ {{x_1}} \right\} - s{x_1}(0) - x_1^\prime (0)}\\{L\left\{ {x_2^{\prime \prime }} \right\} = {s^2}L\left\{ {{x_2}} \right\} - s{x_2}(0) - x_2^\prime (0)}\end{aligned}\)
\( - 5L\left\{ {{x_1}} \right\} + 2L\left\{ {{x_2}} \right\} = {s^2}L\left\{ {{x_1}} \right\} - s{x_1}(0) - x_1^\prime (0)\;\;\;{\rm{ }}\left( {{x_1}(0) = 0,x_1^\prime (0) = 1} \right)\)
\( - 2L\left\{ {{x_2}} \right\} + 2L\left\{ {{x_1}} \right\} = {s^2}L\left\{ {{x_2}} \right\} - s{x_2}(0) - x_2^\prime (0)\;\;\;{\rm{ }}\left( {{x_2}(0) = 1,x_2^\prime (0) = 0} \right)\)
\( - 5L\left\{ {{x_1}} \right\} + 2L\left\{ {{x_2}} \right\} = {s^2}L\left\{ {{x_1}} \right\} - 1\)
\( - 2L\left\{ {{x_2}} \right\} + 2L\left\{ {{x_1}} \right\} = {s^2}L\left\{ {{x_2}} \right\} - s\)
Substitute
\(\begin{aligned}{*{20}{c}}{ - 5{X_1}(s) + 2{X_2}(s) = {s^2}{X_1}(s) - 1}\\{ - 2{X_2}(s) + 2{X_1}(s) = {s^2}{X_2}(s) - s}\end{aligned}\)
System simplifies to the form
\(\left( {5 + {s^2}} \right){X_1}(s) - 2{X_2}(s) = 1.....(3)\)
\( - 2{X_1}(s) + \left( {{s^2} + 2} \right){X_2}(s) = s......(4)\)
Multiply equation (3) by \(\left( {{s^2} + 2} \right)\)and equation (4) by 2 .
\(\left( {5 + {s^2}} \right)\left( {{s^2} + 2} \right){X_1}(s) - 2\left( {{s^2} + 2} \right){X_2}(s) = {s^2} + 2....(5)\)
\( - 4{X_1}(s) + 2\left( {{s^2} + 2} \right){X_2}(s) = 2s......(6)\)
Now add (5) and (6) equations to get
\(\left( {5 + {s^2}} \right)\left( {{s^2} + 2} \right){X_1}(s) - 4{X_1}(s) = {s^2} + 2 + 2s\)
\(\left( {5{s^2} + 10 + {s^4} + 2{s^2} - 4} \right){X_1}(s) = {s^2} + 2 + 2s\)
\(\left( {{s^4} + 7{s^2} + 6} \right){X_1}(s) = {s^2} + 2 + 2s\)
\(\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right){X_1}(s) = {s^2} + 2 + 2s\)
\({X_1}(s) = \frac{{{s^2} + 2 + 2s}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}}\)
Apply Partial Fraction
Decompose the fraction \(\frac{{{s^2} + 2 + 2s}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}}\)using the partial fraction technique.
\(\frac{{{s^2} + 2 + 2s}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}} = \frac{{As + B}}{{{s^2} + 1}} + \frac{{Cs + D}}{{{s^2} + 6}}\)
\( = \frac{{(As + B)\left( {{s^2} + 6} \right) + (Cs + D)\left( {{s^2} + 1} \right)}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}}\)
Since the fractions in above equation have the same denominators, it takes their numerators to be equal.
\(\begin{aligned}{l}{s^2} + 2 + 2s = A{s^3} + 6As + B{s^2} + 6B + C{s^3} + Cs + D{s^2} + D\\{s^2} + 2 + 2s = (A + C){s^3} + (B + D){s^2} + (6A + C)s + 6B + D\end{aligned}\)
Comparing coefficient on both sides
we get
\(A + C = 0\)
\(6A + C = 2\)
\(B + D = 1\)
\(6B + D = 2\)
Based on the previous two systems, we get
From the first equation \(A = - C\)
The second equation is \( - 6C + C = 2\)
\( - 5C = 2\)
\(C = - \frac{2}{5}\)
From the third equation as \(B = 1 - D\)
Substitute the fourth equation as \(6 - 6D + D = 2\)
\( - 5D = 2 - 6\)
\( - 5D = - 4\)
\(D = \frac{4}{5}\)
\(A = \frac{2}{5}\)
\(B = 1 - \frac{4}{5}\)
\(B = \frac{{5 - 4}}{5}\)
\(B = \frac{1}{5}\)
\(\frac{{{s^2} + 2 + 2s}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}} = \frac{{2s + 1}}{{5\left( {{s^2} + 1} \right)}} + \frac{{4 - 2s}}{{5\left( {{s^2} + 6} \right)}}\)
\({X_1}(s) = \frac{{2s + 1}}{{5\left( {{s^2} + 1} \right)}} + \frac{{4 - 2s}}{{5\left( {{s^2} + 6} \right)}}\)
Take inverse Laplace transform of both sides
\({L^{ - 1}}\left\{ {{X_1}(s)} \right\} = {L^{ - 1}}\left\{ {\frac{{2s + 1}}{{5\left( {{s^2} + 1} \right)}} + \frac{{4 - 2s}}{{5\left( {{s^2} + 6} \right)}}} \right\}\)
\( = \frac{2}{5}{L^{ - 1}}\left\{ {\frac{s}{{{s^2} + 1}}} \right\} + \frac{1}{5}{L^{ - 1}}\left\{ {\frac{1}{{{s^2} + 1}}} \right\} + \frac{4}{{5\sqrt 6 }}{L^{ - 1}}\left\{ {\frac{{\sqrt 6 }}{{{s^2} + {{(\sqrt 6 )}^2}}}} \right\} - \frac{2}{5}{L^{ - 1}}\left\{ {\frac{s}{{{s^2} + {{(\sqrt 6 )}^2}}}} \right\}\)
\({x_1}(t) = {L^{ - 1}}\left\{ {{X_1}(s)} \right\} = \frac{2}{5}\cos t + \frac{1}{5}\sin t + \frac{4}{{5\sqrt 6 }}\sin \sqrt 6 t - \frac{2}{5}\cos \sqrt 6 t\)
Multiply equation (3) by 2 and equation (4) by \(\left( {5 + {s^2}} \right).\)
\(2\left( {5 + {s^2}} \right){X_1}(s) - 4{X_2}(s) = 2....(8)\)
\( - 2\left( {5 + {s^2}} \right){X_1}(s) + \left( {5 + {s^2}} \right)\left( {{s^2} + 2} \right){X_2}(s) = s\left( {5 + {s^2}} \right)...(9)\)
Now add (8) and (9) equations to get.
\(\left( {5 + {s^2}} \right)\left( {{s^2} + 2} \right){X_2}(s) - 4{X_2}(s) = 2 + s\left( {5 + {s^2}} \right)\)
\(\left( {5{s^2} + 10 + {s^4} + 2{s^2} - 4} \right){X_2}(s) = 2 + 5s + {s^3}\)
\(\left( {{s^4} + 7{s^2} + 6} \right){X_2}(s) = 2 + 5s + {s^3}\)
\(\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right){X_2}(s) = 2 + 5s + {s^3}\)
\({X_2}(s) = \frac{{2 + 5s + {s^3}}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}}\)
Decompose the fraction
Decompose the fraction \(\frac{{2 + 5s + {s^3}}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}}\)using the partial fraction technique.
\(\frac{{2 + 5s + {s^3}}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}} = \frac{{As + B}}{{{s^2} + 1}} + \frac{{Cs + D}}{{{s^2} + 6}}.....(10)\)
\( = \frac{{(As + B)\left( {{s^2} + 6} \right) + (Cs + D)\left( {{s^2} + 1} \right)}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}}\)
Since the fractions in above equation have the same denominators, it takes their numerators to be equal.
\(2 + 5s + {s^3} = A{s^3} + 6As + B{s^2} + 6B + C{s^3} + Cs + D{s^2} + D\)
\(2 + 5s + {s^3} = (A + C){s^3} + (B + D){s^2} + (6A + C)s + 6B + D\)
Comparing coefficient on both sides, we get
\(A + C = 1\)
\(6A + C = 5\)
\(B + D = 0\)
\(6B + D = 2\)
Based on the previous two systems, we get
Substituting A, B, C and D in the equation (10), we get.
\(\frac{{2 + 5s + {s^3}}}{{\left( {{s^2} + 1} \right)\left( {{s^2} + 6} \right)}} = \frac{{4s + 2}}{{5\left( {{s^2} + 1} \right)}} + \frac{{s - 2}}{{5\left( {{s^2} + 6} \right)}}\)
\({X_2}(s) = \frac{{4s + 2}}{{5\left( {{s^2} + 1} \right)}} + \frac{{s - 2}}{{5\left( {{s^2} + 6} \right)}}\)
Take inverse Laplace transform of both sides.
\({L^{ - 1}}\left\{ {{X_2}(s)} \right\} = {L^{ - 1}}\left\{ {\frac{{4s + 2}}{{5\left( {{s^2} + 1} \right)}} + \frac{{s - 2}}{{5\left( {{s^2} + 6} \right)}}} \right\}\)
\({L^{ - 1}}\left\{ {\frac{s}{{{s^2} + {k^2}}}} \right\} = \cos kt,\;\;\;{L^{ - 1}}\left\{ {\frac{k}{{{s^2} + {k^2}}}} \right\} = \sin kt\)
\( = \frac{4}{5}{L^{ - 1}}\left\{ {\frac{s}{{{s^2} + 1}}} \right\} + \frac{2}{5}{L^{ - 1}}\left\{ {\frac{1}{{{s^2} + 1}}} \right\} - \frac{2}{{5\sqrt 6 }}{L^{ - 1}}\left\{ {\frac{{\sqrt 6 }}{{{s^2} + {{(\sqrt 6 )}^2}}}} \right\} + \frac{1}{5}{L^{ - 1}}\left\{ {\frac{s}{{{s^2} + {{(\sqrt 6 )}^2}}}} \right\}\)
\({x_2}(t) = {L^{ - 1}}\left\{ {{X_2}(s)} \right\}\)
\( = \frac{4}{5}\cos t + \frac{2}{5}\sin t - \frac{2}{{5\sqrt 6 }}\sin \sqrt 6 t + \frac{1}{5}\cos \sqrt 6 t\)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!