Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 1–18 use Definition 7.1.1 to findLft.

6.ft={cost0,0tπ2tπ2

Short Answer

Expert verified

The Laplace transform of above function is,

I=-e-s.π21+s2

Step by step solution

01

Definition 7.1.1 Laplace transform

Let f be a function define fort0.Then the integral

Lft=0e-stftdt

is said to be Laplace transform of f provide that integral converges.

02

Applying the definition

Consider the function ft=cost,tπ20,0tπ2

The objective is to find Lftusing the definition.

Note that, the function f is defined fort0.

From the definition,

Lft=0e-stftdt

Sincerole="math" localid="1663940424049" fis defined in two pieces[0,π2)and [π2,)Laplacian if f isLftexpressed as the sum of two integrals.

Lft=0π2e-stftdt+π2e-stftdt

=0π2e-st0dt+π2e-stcostdt

I=0+π2cost.e-stdt

03

Let solve first, by using integral by parts formula

Soformula isI=u.vdt=uvdt-ddtu.vdtdt

Where u and v we choose according to ILATE rule;

I= Inverse

L= Logarithmic

A= Arithmetic

T= Trigonometry

E= Exponential

Asarithmeticfunctioncomesfirst,

Therefore,

I=π2cost.e-stdtu=e-st;v=costI=e-stcostdt-ddte-st.costdtdt=e-st.sintπ2--s.e-st.sintdt=e-st.sintπ2+se-st.sintdt=e-st.sintπ2+s.I1

Againweuseintegralbypartsformulatosolveit,

I1=e-stsintdtu=e-st;v=sintI=e-stsintdt-ddte-stsintdtdt=-e-st.costπ2-π2s.e-st.costdt=-e-st.costπ2-sπ2e-st.costdtI1=-e-st.costπ2-s.I

04

Simplification

Wecombineand for further simplification to get required integral;

I=e-st.sintπ2+-s.e-stcostπ2-s2II+s2I=e-st.sintπ2+-s.e-stcostπ2I=11+s2e-st.sint-s.costπ2I=11+s2e-s..sin-s.cosπ-e-s.π2.sinπ2-s.cosπ2I=11+s20-e-sπ2.1-s.0I=-e-s.π21+s2

Therefore the required Laplace transform of function is,

I=-e-s.π21+s2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free