Chapter 7: Q61E (page 317) URL copied to clipboard! Now share some education! Solve the model for a driven spring/mass system with dampingmd2xdt2+βdxdt+kx=f(t),x(0)=0,x'(0)=0where the driving function f is as specied. Use a graphing utility to graph x(t) for the indicated values of tm=12,β=1,k=5,f. is the meander function in Problem 53 with amplitude 10, anda=π,0⩽t⩽2π Short Answer Expert verified Laplace transform x(t)=21-e-tcos3t-13e-tsin3t+4∑n=0∞(-1)n1-e-(t-nπ)cos3(t-nπ)-13e-(t-nπ)sin3(t-nπ)U(t-nπ) Step by step solution 01 Define Laplace transform: The conversion of the function f (x) to the function g(t)=∫∞0e-xtf(x)dxis particularly useful in reducing the solution of a standard dividing line equation with constant coefficients in the polynomial equation solution 02 Find Xs : 12x''+x'+5x=f(t)From this we can come to know,Lx'=sL{x}-x(0)Lx''=s2L{x}-sx(0)-x'(0)Take Laplace transform on both side of equation,L{f(t)}=L12x''+x'+5x=12Lx''+Lx'+5L{x}=*12s2L{x}-sx(0)-x'(0)+sL{x}-x(0)+5L{x}x(0)=0,x'(0)=0=12s2+s+5L{x}Consider L{x}=X(s) replace in above equationL{f(t)}=12s2+s+5X(s)--------------------(1)From solution 53,L{f(t)}=101-e-ass1+e-as(a=π)L{f(t)}=101-e-πss1+e-πsSubstitute this equation in equation (1)12s2+s+5X(s)=101-e-πss1+e-πss2+2s+10X(s)=201-e-πss1+e-πs 03 Evaluate the equation using partial fraction technique: 20ss2+2s+10=As+Bs+Cs2+2s+10=As2+2s+10+Bs2+Csss2+2s+10Have same numerator and denominator20=As2+2As+10A+Bs2+Cs20=(A+B)s2+(2A+C)s+10ACompare coefficient on both sides,A+B=02A+C=010A=20B=-AC=-2AA=2B=-2C=-4A=2Substitute the value in equation (3)20ss2+2s+10=2s-2s+4s2+2s+10 04 Find :Xs X(s)=1-e-πs2s-2s+4s2+2s+1011+e-πs=1-e-πs2s-2s+4s2+2s+101-e-πs+e-2πs-e-3πs+⋯=2s-2s+4s2+2s+101-2e-πs+2e-2πs-2e-3πs+⋯=2s-2(s+1)+2(s+1)2+9+2∑n=1∞(-1)n2s-2s+4s2+2s+10e-nπs=2s-2(s+1)(s+1)2+9-2(s+1)2+9+4∑n=1∞(-1)n1s-s+1(s+1)2+9-1(s+1)2+9e-nπsInverse Laplace transform of both sideL-1{X(s)}=2L-11s-2L-1s+1(s+1)2+32-23L-13(s+1)2+32+4∑n=1∞(-1)nL-11se-nπs-L-1s+1(s+1)2+32e-nπs-13L-13(s+1)2+32e-nπsrole="math" localid="1664029728797" =**21-e-tcos3t-13e-tsin3t∑n=1∞(-1)n1-e-(t-nπ)cos3(t-nπ)-13e-(t-nπ)sin3(t-nπ)U(t-nπ)Therefore, Laplace transform isx(t)=L-1{X(s)}=21-e-tcos3t-13e-tsin3t+4∑n=1∞(-1)n1-e-(t-nπ)cos3(t-nπ)-13e-(t-nπ)sin3(t-nπ)U(t-nπ) 05 Graph xt : Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!