Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a battery of constant voltage E0 that charges the capacitor shown in Figure 7.3.10. Divide equation (20) by L and define 2λ=R/L and ω2=1/LC.Use the Laplace transform to show that the solution q''+2λq'+ω2q=E0/Lq(t) of subject toq(0)=0,i(0)=0 is

q(t)=E0C1-e-λtcoshλ2-ω2t+λλ2-ω2sinhλ2-ω2tλ>ωE0C1-e-λtcosω2-λ2t+λω2-λ2sinω2-λ2tλ<ω

Short Answer

Expert verified

The solution q(t) ofq''+2λq'+ω2q=E0L subject to q(0)=0,i(0)=0 is obtained as

role="math" localid="1664313108164" q(t)=E0C1-e-λtcoshλ2-ω2t-λe-λtsinhλ2-ω2tλ2-ω2,λ>ωE0C1-e-λtcosω2-λ2t-λe-λtω2-λ2sinω2-λ2t,λ<ωE0C1-e-λt-λte-λt,λ=ω

Step by step solution

01

Define Laplace Transform

Let f be a function defined fort0. Then the integral

L{f(t)}=0e-stf(t)dt

is said to be the Laplace transform of f, provided that the integral converges.

02

Apply Laplace Transform

We know that

Lq''=s2L{q}-sq(0)-q'(0)Lq'=sL{q}-q(0)q(0)=0,q'(0)=0

On taking Laplace Transform, we get

E0LL{1}=Lq''+2λLq'+ω2L{q}E0L1*s=s2L{q}+2sλL{q}+ω2L{q}L{1}=1sE0Ls=s2+2λs+ω2L{q}L{q}=E0L1ss2+2λs+ω2n-----(1)

03

Solve the equation using partial fraction technique

On decomposing the fractional part, we get

1ss2+2λs+ω2=As+Bs+Cs2+2λs+ω2=As2+2λs+ω2+(Bs+C)sss2+2λs+ω2----(2)

We can observe that the denominators are equal, so we can equate the numerators as well.

1=As2+2λsA+ω2A+Bs2+Cs1=(A+B)s2+(2λA+C)s+ω2A

On comparing the coefficients, we get

2λA+C=0ω2A=1¯B=-1ω211

B=-1ω2C=-2λω2A=1ω2

Thus, on substituting the values of A, B and C we get

1ss2+2λs+ω2=1sω2-s+2λω2s2+2λs+ω2

04

Evaluate the equation

Now, the equation (1) will become

L{q}=E0Lω21s-s+2λs2+2λs+ω2Weknow,ω2=1LC1Lω2=CL{q}=E0C1s-s+2λs2+2λs+ω2

When,λ>ωs2+2λs+ω2=(s+λ)2-λ2-ω2L{q}=E0C1s-s+2λ(s+λ)2-λ2-ω2

Take inverse Laplace transform on both sides

q=E0CL-11s-s+2λ(s+λ)2-λ2-ω2q=E0CL-11s-s+λ(s+λ)2-λ2-ω2-λλ2-ω2λ2-ω2(s+λ)2-λ2-ω2q=E0C1-e-λtcoshλ2-ω2t-λe-λtsinhλ2-ω2tλ2-ω2eatsinhkt=L-1k(s-a)2-k2,eatcoshkt=L-1s-a(s-a)2-k2

When,λ<ωs2+2λs+ω2=(s+λ)2-ω2-λ2L{q}=E0C1s-s+2λ(s+λ)2-ω2-λ2

Take inverse Laplace transform on both sides

q=E0CL-11s-s+2λ(s+λ)2-λ2-ω2q=E0CL-11s-s+λ(s+λ)2-λ2-ω2-λλ2-ω2λ2-ω2(s+λ)2-λ2-ω2q=E0C1-e-λtcoshλ2-ω2t-λe-λtsinhλ2-ω2tλ2-ω2eatsinhkt=L-1k(s-a)2-k2,eatcoshkt=L-1s-a(s-a)2-k2

When,λ=ωs2+2λs+ω2=(s+λ)2L{q}=E0C1s-s+2λ(s+λ)2

Take inverse Laplace transform on both sides

q=E0CL-11s-s+2λ(s+λ)2q=E0CL-11s-1s+λ-λ(s+λ)2q=E0C1-e-λt-λte-λt

05

Step 5:

Therefore, q(t) is obtained as

q(t)=E0C1-e-λtcoshλ2-ω2t-λe-λtsinhλ2-ω2tλ2-ω2,λ>ωE0C1-e-λtcosω2-λ2t-λe-λtω2-λ2sinω2-λ2t,λ<ωE0C1-e-λt-λte-λt,λ=ω

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free