Chapter 7: Q35 E (page 303) URL copied to clipboard! Now share some education! Consider a battery of constant voltage E0 that charges the capacitor shown in Figure 7.3.10. Divide equation (20) by L and define 2λ=R/L and ω2=1/LC.Use the Laplace transform to show that the solution q''+2λq'+ω2q=E0/Lq(t) of subject toq(0)=0,i(0)=0 isq(t)=E0C1-e-λtcoshλ2-ω2t+λλ2-ω2sinhλ2-ω2tλ>ωE0C1-e-λtcosω2-λ2t+λω2-λ2sinω2-λ2tλ<ω Short Answer Expert verified The solution q(t) ofq''+2λq'+ω2q=E0L subject to q(0)=0,i(0)=0 is obtained asrole="math" localid="1664313108164" q(t)=E0C1-e-λtcoshλ2-ω2t-λe-λtsinhλ2-ω2tλ2-ω2,λ>ωE0C1-e-λtcosω2-λ2t-λe-λtω2-λ2sinω2-λ2t,λ<ωE0C1-e-λt-λte-λt,λ=ω Step by step solution 01 Define Laplace Transform Let f be a function defined fort≥0. Then the integralL{f(t)}=∫0∞e-stf(t)dtis said to be the Laplace transform of f, provided that the integral converges. 02 Apply Laplace Transform We know thatLq''=s2L{q}-sq(0)-q'(0)Lq'=sL{q}-q(0)q(0)=0,q'(0)=0On taking Laplace Transform, we getE0LL{1}=Lq''+2λLq'+ω2L{q}E0L1*s=s2L{q}+2sλL{q}+ω2L{q}L{1}=1sE0Ls=s2+2λs+ω2L{q}L{q}=E0L1ss2+2λs+ω2n-----(1) 03 Solve the equation using partial fraction technique On decomposing the fractional part, we get1ss2+2λs+ω2=As+Bs+Cs2+2λs+ω2=As2+2λs+ω2+(Bs+C)sss2+2λs+ω2----(2)We can observe that the denominators are equal, so we can equate the numerators as well.1=As2+2λsA+ω2A+Bs2+Cs1=(A+B)s2+(2λA+C)s+ω2AOn comparing the coefficients, we get2λA+C=0ω2A=1¯B=-1ω211B=-1ω2C=-2λω2A=1ω2Thus, on substituting the values of A, B and C we get1ss2+2λs+ω2=1sω2-s+2λω2s2+2λs+ω2 04 Evaluate the equation Now, the equation (1) will becomeL{q}=E0Lω21s-s+2λs2+2λs+ω2Weknow,ω2=1LC⇔1Lω2=CL{q}=E0C1s-s+2λs2+2λs+ω2When,λ>ωs2+2λs+ω2=(s+λ)2-λ2-ω2L{q}=E0C1s-s+2λ(s+λ)2-λ2-ω2Take inverse Laplace transform on both sidesq=E0CL-11s-s+2λ(s+λ)2-λ2-ω2q=E0CL-11s-s+λ(s+λ)2-λ2-ω2-λλ2-ω2λ2-ω2(s+λ)2-λ2-ω2q=E0C1-e-λtcoshλ2-ω2t-λe-λtsinhλ2-ω2tλ2-ω2eatsinhkt=L-1k(s-a)2-k2,eatcoshkt=L-1s-a(s-a)2-k2When,λ<ωs2+2λs+ω2=(s+λ)2-ω2-λ2L{q}=E0C1s-s+2λ(s+λ)2-ω2-λ2Take inverse Laplace transform on both sidesq=E0CL-11s-s+2λ(s+λ)2-λ2-ω2q=E0CL-11s-s+λ(s+λ)2-λ2-ω2-λλ2-ω2λ2-ω2(s+λ)2-λ2-ω2q=E0C1-e-λtcoshλ2-ω2t-λe-λtsinhλ2-ω2tλ2-ω2eatsinhkt=L-1k(s-a)2-k2,eatcoshkt=L-1s-a(s-a)2-k2When,λ=ωs2+2λs+ω2=(s+λ)2L{q}=E0C1s-s+2λ(s+λ)2Take inverse Laplace transform on both sidesq=E0CL-11s-s+2λ(s+λ)2q=E0CL-11s-1s+λ-λ(s+λ)2q=E0C1-e-λt-λte-λt 05 Step 5: Therefore, q(t) is obtained asq(t)=E0C1-e-λtcoshλ2-ω2t-λe-λtsinhλ2-ω2tλ2-ω2,λ>ωE0C1-e-λtcosω2-λ2t-λe-λtω2-λ2sinω2-λ2t,λ<ωE0C1-e-λt-λte-λt,λ=ω Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!