Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The table in Appendix C does not contain an entry for

L-1{8k3s(s2+k2)3}

(a) Use (4) along with the results in (5) to evaluate this inverse transform. Use a CAS as an aid in evaluating the convolution integral.

(b) Re-examine your answer to part (a). Could you have obtained the result in a different manner?

Short Answer

Expert verified

The laplace transformation isL-18k3s(s2+k2)3=tsinkt-kt2coskt.

Step by step solution

01

Applying inverse transformation property;

(a)L-18k3ss2+k23as the product of F(s)G(s), where

F(s) =2k3s2+k22and G(s) =4ss2+k212

02

Using inverse Laplace transform; 

According to the inverse Laplace transformation property

f(t)=L-1F(s)=L-12k3s2+k22=sinkt-ktcosktg(t)=L-1G(s)=4L-1ss2+k2=4coskt

03

Using convolution;

Use convolution to get

L-18k3ss2+k23=f(t)*g(t)

=40tsinkτ-kτcoskτcosk(t-τ)dτ

L-18k3s(s2+k2)3=tsinkt-kt2cosk

Using a CSA to evaluate the integral we get

L-18k3s(s2+k2)3=tsinkt-kt2coskt

If n=1, then

L-1tsinkt-kt2coskt=(-1)dds2k3(s2+k2)2=8k3s(s2+k2)3

Hence the final answer is L-18k3s(s2+k2)3=tsinkt-kt2coskt

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free