Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 9–14 use the Laplace transform to solve the given initial value problem. Use the table of Laplace transforms in Appendix C as needed

y''+9y=cos3t,y(0)=2,y'(0)=5

Short Answer

Expert verified

Solution of given initial value problem isy=2cos3t+53sin3t+16tsin3t

Step by step solution

01

Laplace transformation of a linear differential equation with constant coefficient

1. The Laplace transformation of a linear differential equation with constant coefficient is express a.anL{dnydtn}=an[snY(s)-s(n-1)y(0)-L-y(n-1)(0)].

2. The formula for the inverse Laplace transform is as follows,

L-1{s2+k2}=sinktL-1{s2+k2}=cosktL-1{2ks(s2+k2)2}=tsinkt

3. The formula for the Laplace transform of cosktis as follows,

L{coskt}=ss2+k2

02

Apply the Laplace transform of the given linear differential equation

Use the above definition to write the Laplace transform of the given linear differential equation

s2L{y}-sy(0)-y'(0)+9L{y}=L{cos3t}

Put the value y (0) =2 and y' (0) =5 in above expression.

s2+9L{y}-2s-5=ss2+9s2+9L{y}=ss2+9+2s+5s2+9L{y}=2s3+5s2+19s+45s2+9L{y}=2s3+5s2+19s+45s2+92

From the above expression,

localid="1668588681080" L{y}=2s3+5s2+19s+45s2+92..........1

03

Evaluate the value of a0 and a1

Simplify Equation (1) using partial fractions as follows

2s3+5s2+19s+45(s2+9)2=a1s+a0s2+9+a3s+a2(s2+9)2

From the above expression,

2s3+5s2+19s+45(s2+9)2=a1s+a0s2+9+a3s+a2(s2+9)2.-------(2)

Multiply with(s2+9)2 on both sides of equation (2).

(2s3+5s2+19s+45)(s2+9)2(s2+9)2=(a1s+a0)(s2+9)2s2+9+(a3s+a2)(s2+9)2(s2+9)2

2s3+5s2+19s+45=a1s3+a0s2+s(9a1+a3)+(9a0+a2)

Comparing the constant terms in above expression as follows.

9a0+a2=459a1+a3=19a0=5a1=2

04

Evaluate the coefficients of s2 and s

Simplifying the above equations fora2 by comparing the coefficients ofs2 as follows.

a0=595+a2=45a2=0

Simplifying the above equations fora3 by comparing the coefficients of $s$ as follows.

9a1+a3=1992+a3=19a3=1

Substitute the value ofa0,a1,a2 anda3 in equation (2).

2s3+5s2+19s45(s2+9)2=s(s2+9)2+2s+5s2+9

Above expression is simplified as follows,

2s3+5s2+19s45(s2+9)2=s(s2+9)2+2s+5s2+9L{y}=2ss2+9+5s2+9+s(s2+9)2

From the above expression,

L{y}=2ss2+9+5s2+9+s(s2+9)2.----(3)

05

Apply inverse Laplace transform

Take inverse Laplace on both sides of equation (3),

y=L12ss2+9+335s2+9+s(s2+9)2=2L1ss2+32+53L13s2+32+16L16s(s2+9)2=2cos3t+53sin3t+16tsin3t

Therefore, the solution of given initial value problem is y=2cos3t+53sin3t+16tsin3t.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free