Chapter 8: Q9E (page 361)
In Problems 9 and 10, solve the given initial-value problem.
\(9.{X^\prime } = \left( {\begin{array}{*{20}{r}}{ - 1}&{ - 2}\\3&4\end{array}} \right)X + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right),\;\;\;X(0) = \left( {\begin{array}{*{20}{r}}{ - 4}\\5\end{array}} \right)\)
Short Answer
The initial value \({X^\prime } = \left( {\begin{array}{*{20}{r}}{ - 1}&{ - 2}\\3&4\end{array}} \right)X + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right),\;\;\;X(0) = \left( {\begin{array}{*{20}{r}}{ - 4}\\5\end{array}} \right)\) is \(X(t) = 4\left( {\begin{array}{*{20}{r}}{ - 2}\\3\end{array}} \right){e^{2t}} + 13\left( {\begin{array}{*{20}{r}}1\\{ - 1}\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{r}}{ - 9}\\6\end{array}} \right)\)