\( For {\lambda _{ - 1}} = {\lambda _2} = 5:\)
\((A - 5I\mid 0) = \left( {\begin{array}{*{20}{c}}{0 - 5}&0&5&0\\0&{5 - 5}&0&0\\5&0&{0 - 5}&0\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - 5}&0&5&0\\0&0&0&0\\5&0&{ - 5}&0\end{array}} \right)\)
from the matrix we see that
\( - 5{k_1} + 5{k_3} = 0\;\;\; \to \;\;\;{k_1} = {k_3}\)
as for\({k_2}\), we choose an arbitrary value. Choosing\({k_1} = 0\)yields\({k_3} = 0\), and let\({k_2} = 1\), this gives an eigenvector and a corresponding solution vector:
\({K_1} = \left( {\begin{array}{*{20}{l}}0\\1\\0\end{array}} \right),\;\;\;{X_1} = \left( {\begin{array}{*{20}{l}}0\\1\\0\end{array}} \right){e^{5t}}\)
Choosing\({k_1} = 1\)yields\({k_3} = 1\), and let\({k_2} = 0\), this gives an eigenvector and a corresponding solution vector:
\({K_2} = \left( {\begin{array}{*{20}{l}}1\\0\\1\end{array}} \right),\;\;\;{X_2} = \left( {\begin{array}{*{20}{l}}1\\0\\1\end{array}} \right){e^{5t}}\)
For\({\lambda _ - }3 = - 5:\)
\((A + 5I\mid 0) = \left( {\begin{array}{*{20}{c}}{0 - ( - 5)}&0&5&0\\0&{5 - ( - 5)}&0&0\\5&0&{0 - ( - 5)}&0\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}5&0&5&0\\0&{10}&0&0\\5&0&5&0\end{array}} \right)\)
from the matrix we see that\({k_2} = 0\), and
\(5{k_1} + 5{k_3} = 0\;\;\; \to \;\;\;{k_1} = - {k_3}\)
Choosing\({k_3} = 1\)yields\({k_1} = - 1\), this gives an eigenvector and a corresponding solution vector:
\({K_3} = \left( {\begin{array}{*{20}{r}}{ - 1}\\0\\1\end{array}} \right),\;\;\;{X_3} = \left( {\begin{array}{*{20}{r}}{ - 1}\\0\\1\end{array}} \right){e^{ - 5t}}\)
Therefore,
\({X_{\bf{c}}} = {c_1}\left( {\begin{array}{*{20}{l}}0\\1\\0\end{array}} \right){e^{5t}} + {c_2}\left( {\begin{array}{*{20}{l}}1\\0\\1\end{array}} \right){e^{5t}} + {c_3}\left( {\begin{array}{*{20}{r}}{ - 1}\\0\\1\end{array}} \right){e^{ - 5t}}\)