Chapter 8: Q7E (page 360)
In Problems, 1-8 use the method of undetermined coefficients to solve the given nonhomogeneous system.
\(7.{{\bf{X}}^\prime } = \left( {\begin{array}{*{20}{l}}1&1&1\\0&2&3\\0&0&5\end{array}} \right)X + \left( {\begin{array}{*{20}{r}}1\\{ - 1}\\2\end{array}} \right){e^{4t}}\)
Short Answer
The method of undetermined coefficients to solve the nonhomogeneous system of
\({{\bf{X}}^\prime } = \left( {\begin{array}{*{20}{l}}1&1&1\\0&2&3\\0&0&5\end{array}} \right){\bf{X}} + \left( {\begin{array}{*{20}{r}}1\\{ - 1}\\2\end{array}} \right){e^{4t}}\) is \(X(t) = {c_1}\left( {\begin{array}{*{20}{l}}1\\0\\0\end{array}} \right){e^t} + {c_2}\left( {\begin{array}{*{20}{l}}1\\1\\0\end{array}} \right){e^{2t}} + {c_3}\left( {\begin{array}{*{20}{l}}1\\2\\2\end{array}} \right){e^{5t}} + \left( {\begin{array}{*{20}{r}}{ - \frac{7}{2}}\\{ - \frac{3}{2}}\\{ - 2}\end{array}} \right){e^{4t}}\)