Chapter 8: Q6E (page 361)
In Problems, 1-8 use the method of undetermined coefficients to solve the given nonhomogeneous system.
\({\rm{6}}{\rm{. }}{{\bf{X}}^\prime } = \left( {\begin{array}{*{20}{l}}{ - 1}&5\\{ - 1}&1\end{array}} \right){\bf{X}} + \left( {\begin{array}{*{20}{c}}{\sin t}\\{ - 2\cos t}\end{array}} \right)\)
Short Answer
The method of undetermined coefficients to solve the nonhomogeneous system of\({X^\prime } = \left( {\begin{array}{*{20}{l}}{ - 1}&5\\{ - 1}&1\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}{\sin t}\\{ - 2\cos t}\end{array}} \right)\) is \({\rm{ }}{\bf{X}}(t) = {c_1}\left( {\begin{array}{*{20}{c}}{\cos 2t + \sin 2t}\\{\cos 2t}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{c}}{\sin 2t - 2\cos 2t}\\{\sin 2t}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - \frac{1}{3}}\\{\frac{1}{3}}\end{array}} \right)\sin t + \left( {\begin{array}{*{20}{c}}{ - 3}\\{ - \frac{2}{3}}\end{array}} \right)\cos t\)