The entries in \({X_1}\)form the first column of\(\Phi (t)\), and the entries in \({X_2}\)form the second column of\(\Phi (t)\).
Therefore,
\(\Phi (t) = \left( {\begin{array}{*{20}{c}}1&{1 + t}\\1&t\end{array}} \right)\)
We want to make sure that \(\Phi (t)\)is an invertible matrix by checking the determinant, where
\(|\Phi (t)| = \left| {\begin{array}{*{20}{c}}1&{1 + t}\\1&t\end{array}} \right|\)
\( = t - (1 + t)\)
\( = - 1 \ne 0\)
Since the determinant does not equal zero, the matrix is in fact, an invertible matrix.
So now,
\({\Phi ^{ - 1}}(t) = - \left( {\begin{array}{*{20}{c}}t&{ - 1 - t}\\{ - 1}&1\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - t}&{1 + t}\\1&{ - 1}\end{array}} \right)\)
Using
\(X = \Phi (t){\Phi ^{ - 1}}(1)X(1) + \Phi (t)\int_0^t {{\Phi ^{ - 1}}} (s)F(s)ds\)
Where
\(X(1) = \left( {\begin{array}{*{20}{r}}2\\{ - 1}\end{array}} \right)\)
First, we have
\(\Phi (t){\Phi ^{ - 1}}(1)X(1){\rm{ }} = \left( {\begin{array}{*{20}{c}}1&{1 + t}\\1&t\end{array}} \right)\left( {\begin{array}{*{20}{r}}{ - 1}&2\\1&{ - 1}\end{array}} \right)\left( {\begin{array}{*{20}{r}}2\\{ - 1}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}1&{1 + t}\\1&t\end{array}} \right)\left( {\begin{array}{*{20}{r}}{ - 4}\\3\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - 1 + 3t}\\{ - 4 + 3t}\end{array}} \right)\)
Substituting into (1),
\(X = \left( {\begin{array}{*{20}{c}}{ - 1 + 3t}\\{ - 4 + 3t}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&{1 + t}\\1&t\end{array}} \right)\int_0^t {\left( {\begin{array}{*{20}{c}}{ - s}&{1 + s}\\1&{ - 1}\end{array}} \right)} \left( {\begin{array}{*{20}{c}}{\frac{1}{s}}\\{\frac{1}{s}}\end{array}} \right)ds\)
\( = \left( {\begin{array}{*{20}{c}}{ - 1 + 3t}\\{ - 4 + 3t}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&{1 + t}\\1&t\end{array}} \right)\int_0^t {\left( {\begin{array}{*{20}{c}}{\frac{1}{s}}\\0\end{array}} \right)} ds\)
\( = \left( {\begin{array}{*{20}{c}}{ - 1 + 3t}\\{ - 4 + 3t}\end{array}} \right) + \left. {\left( {\begin{array}{*{20}{c}}1&{1 + t}\\1&t\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\ln (s)}\\0\end{array}} \right)} \right|_0^t\)
\( = \left( {\begin{array}{*{20}{c}}{ - 1 + 3t}\\{ - 4 + 3t}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}1&{1 + t}\\1&t\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\ln (t)}\\0\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{l}}{ - 1 + 3t}\\{ - 4 + 3t}\end{array}} \right) + \left( {\begin{array}{*{20}{l}}{\ln (t)}\\{\ln (t)}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right)t - \left( {\begin{array}{*{20}{l}}1\\4\end{array}} \right) + \left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right)\ln (t)\)
Therefore, the general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{l}}1&{ - 1}\\1&{ - 1}\end{array}} \right)X + \left( {\begin{array}{*{20}{l}}{1/t}\\{1/t}\end{array}} \right)\) is \(X = \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right)t - \left( {\begin{array}{*{20}{l}}1\\4\end{array}} \right) + \left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right)\ln (t)\)