The entries in \({X_1}\)form the first column of\(\Phi (t)\), and the entries in \({X_2}\)form the second column of\(\Phi (t)\).
Therefore,
\(\Phi (t) = \left( {\begin{array}{*{20}{r}}{ - {e^{4t}}}&{{e^{2t}}}\\{{e^{4t}}}&{{e^{2t}}}\end{array}} \right)\)
We want to make sure that \(\Phi (t)\)is an invertible matrix by checking the determinant, where
\(|\Phi (t)| = \left| {\begin{array}{*{20}{r}}{ - {e^{4t}}}&{{e^{2t}}}\\{{e^{4t}}}&{{e^{2t}}}\end{array}} \right|\)
\( = - {e^{4t}}{e^{2t}} - {e^{2t}}{e^{4t}}\)
\( = - {e^{6t}} - {e^{6t}}\)
\( = - 2{e^{6t}} \ne 0\)
Since the determinant does not equal zero, the matrix is in fact, an invertible matrix.
So now,
\({\Phi ^{ - 1}}(t) = - \frac{1}{{2{e^{6t}}}}\left( {\begin{array}{*{20}{c}}{{e^{2t}}}&{ - {e^{2t}}}\\{ - {e^{4t}}}&{ - {e^{4t}}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - \frac{1}{2}{e^{ - 4t}}}&{\frac{1}{2}{e^{ - 4t}}}\\{\frac{1}{2}{e^{ - 2t}}}&{\frac{1}{2}{e^{ - 2t}}}\end{array}} \right)\)
Using
\(X = \Phi (t){\Phi ^{ - 1}}(0)X(0) + \Phi (t)\int_0^t {{\Phi ^{ - 1}}} (s)F(s)ds\)
Where
\(X(0) = \left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right)\)
First, we have
\(\Phi (t){\Phi ^{ - 1}}(0)X(0) = \left( {\begin{array}{*{20}{r}}{ - {e^{4t}}}&{{e^{2t}}}\\{{e^{4t}}}&{{e^{2t}}}\end{array}} \right)\left( {\begin{array}{*{20}{r}}{ - \frac{1}{2}}&{\frac{1}{2}}\\{\frac{1}{2}}&{\frac{1}{2}}\end{array}} \right)\left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - {e^{4t}}}&{{e^{2t}}}\\{{e^{4t}}}&{{e^{2t}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - \frac{1}{2} + \frac{1}{2}}\\{\frac{1}{2} + \frac{1}{2}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{r}}{ - {e^{4t}}}&{{e^{2t}}}\\{{e^{4t}}}&{{e^{2t}}}\end{array}} \right)\left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{{e^{2t}}}\\{{e^{2t}}}\end{array}} \right)\)
Substituting into (1),
\(X = \left( {\begin{array}{*{20}{l}}{{e^{2t}}}\\{{e^{2t}}}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - {e^{4t}}}&{{e^{2t}}}\\{{e^{4t}}}&{{e^{2t}}}\end{array}} \right)\int_0^t {\left( {\begin{array}{*{20}{c}}{ - \frac{1}{2}{e^{ - 4s}}}&{\frac{1}{2}{e^{ - 4s}}}\\{\frac{1}{2}{e^{ - 2s}}}&{\frac{1}{2}{e^{ - 2s}}}\end{array}} \right)} \left( {\begin{array}{*{20}{l}}{4{e^{2s}}}\\{4{e^{4s}}}\end{array}} \right)ds\)
\( = \left( {\begin{array}{*{20}{c}}{{e^{2t}}}\\{{e^{2t}}}\end{array}} \right) + \left( {\begin{array}{*{20}{r}}{ - {e^{4t}}}&{{e^{2t}}}\\{{e^{4t}}}&{{e^{2t}}}\end{array}} \right)\int_0^t {\left( {\begin{array}{*{20}{c}}{ - 2{e^{ - 2s}} + 2}\\{2 + 2{e^{2s}}}\end{array}} \right)} dt\)
\(\left. { = \left( {\begin{array}{*{20}{l}}{{e^{2t}}}\\{{e^{2t}}}\end{array}} \right) + \left( {\begin{array}{*{20}{r}}{ - {e^{4t}}}&{{e^{2t}}}\\{{e^{4t}}}&{{e^{2t}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{e^{ - 2s}} + 2s}\\{2s + {e^{2s}}}\end{array}} \right)} \right]_0^t\)
\( = \left( {\begin{array}{*{20}{l}}{{e^{2t}}}\\{{e^{2t}}}\end{array}} \right) + \left( {\begin{array}{*{20}{r}}{ - {e^{4t}}}&{{e^{2t}}}\\{{e^{4t}}}&{{e^{2t}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{{e^{ - 2t}} + 2t - 1}\\{{e^{2t}} + 2t - 1}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{{e^{2t}}}\\{{e^{2t}}}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - {e^{2t}} - 2t{e^{4t}} + {e^{4t}} + {e^{4t}} + 2t{e^{2t}} - {e^{2t}}}\\{{e^{2t}} + 2t{e^{4t}} - {e^{4t}} + {e^{4t}} + 2t{e^{2t}} - {e^{2t}}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{{e^{2t}}}\\{{e^{2t}}}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{ - 2{e^{2t}} - 2t{e^{4t}} + 2{e^{4t}} + 2t{e^{2t}}}\\{2t{e^{4t}} + 2t{e^{2t}}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{r}}{ - 1}\\1\end{array}} \right){e^{2t}} + \left( {\begin{array}{*{20}{r}}{ - 2}\\2\end{array}} \right)t{e^{4t}} + \left( {\begin{array}{*{20}{l}}2\\0\end{array}} \right){e^{4t}} + \left( {\begin{array}{*{20}{l}}2\\2\end{array}} \right)t{e^{2t}}\)
Therefore, the general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{r}}3&{ - 1}\\{ - 1}&3\end{array}} \right)X + \left( {\begin{array}{*{20}{l}}{4{e^{2t}}}\\{4{e^{4t}}}\end{array}} \right)\) is \(X = \left( {\begin{array}{*{20}{r}}{ - 1}\\1\end{array}} \right){e^{2t}} + \left( {\begin{array}{*{20}{r}}{ - 2}\\2\end{array}} \right)t{e^{4t}} + \left( {\begin{array}{*{20}{l}}2\\0\end{array}} \right){e^{4t}} + \left( {\begin{array}{*{20}{l}}2\\2\end{array}} \right)t{e^{2t}}\)