For\({\lambda _1} = i\):
\((A - (i)I\mid 0) = \left( {\begin{array}{*{20}{c}}{1 - i}&{ - 2}&0\\1&{ - 1 - i}&0\end{array}} \right)\)
Apply row operation\((1 - i){R_2} - {R_1} \to {R_2}\$ :\)
\( = \left( {\begin{array}{*{20}{c}}{1 - i}&{ - 2}&0\\0&0&0\end{array}} \right)\)
So here we have a single equation,
\((1 - i){k_1} - 2{k_2} = 0\;\;\; \to \;\;\;{k_1} = \frac{2}{{1 - i}}{k_2}\)
Choosing\({k_2} = 1\)yields\({k_1} = 1 + i\). This gives an eigenvector:
\(K = \left( {\begin{array}{*{20}{c}}{1 + i}\\1\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right) + i\left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\)
And column vectors:
\({B_1} = \left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right),\;\;\; and \;\;\;{B_2} = \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\)
Also,
\(\lambda = \alpha + \beta i\;\;\; \to \;\;\;\lambda = 0 + i\)
Where\(\alpha = 0\)and\(\beta = 1\).
Therefore,
\({X_1} = \left[ {{B_1}cos\beta t - {B_2}sin\beta t} \right]{e^{\alpha t}}\)
\( = \left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right)\cos t - \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\sin t = \left( {\begin{array}{*{20}{c}}{\cos t - \sin t}\\{\cos t}\end{array}} \right)\)
And
\({X_2} = \left[ {{B_2}cos\beta t + {B_1}sin\beta t} \right]{e^{\alpha t}}\)
\( = \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\cos t + \left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right)\sin t = \left( {\begin{array}{*{20}{c}}{\cos t + \sin t}\\{\sin t}\end{array}} \right)\)
Hence, the complementary function is
\({X_{\bf{c}}} = {c_1}\left( {\begin{array}{*{20}{c}}{\cos t - \sin t}\\{\cos t}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{c}}{\cos t + \sin t}\\{\sin t}\end{array}} \right)\)