Chapter 8: Q29E (page 361)
In Problems 13-32 use variation of parameters to solve the given nonhomogeneous system.
\[29.{X^\prime } = \left( {\begin{array}{*{20}{r}}1&2\\{ - \frac{1}{2}}&1\end{array}} \right)X + \left( {\begin{array}{*{20}{l}}{\csc t}\\{\sec t}\end{array}} \right){e^t}\]
Short Answer
The general solution of \[{X^\prime } = \left( {\begin{array}{*{20}{r}}1&2\\{ - \frac{1}{2}}&1\end{array}} \right)X + \left( {\begin{array}{*{20}{l}}{\csc t}\\{\sec t}\end{array}} \right){e^t}\] is \[X(t) = {c_1}\left( {\begin{array}{*{20}{c}}{2\cos t}\\{ - \sin t}\end{array}} \right){e^t} + {c_2}\left( {\begin{array}{*{20}{c}}{2\sin t}\\{\cos t}\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{c}}{\cos t}\\{ - \frac{1}{2}\sin t}\end{array}} \right){e^t}\ln |\sin t| + \left( {\begin{array}{*{20}{c}}{3\sin t}\\{\frac{3}{2}\cos t}\end{array}} \right)t{e^t}\]