Chapter 8: Q28E (page 366)
Use \((1)\) to find the general solution of
\({\bf{X'}} = \left( {\begin{array}{*{20}{c}}{ - 4{\rm{ }}0{\rm{ }}6{\rm{ }}0}\\{{\rm{ 0 }} - 5{\rm{ }}0{\rm{ }} - 4}\\{ - 1{\rm{ }}0{\rm{ }}1{\rm{ }}0}\\{{\rm{ 0 }}3{\rm{ }}0{\rm{ }}2}\end{array}} \right){\bf{X}}\)
Use MATLAB or a CAS to find \({e^{{\bf{A}}t}}\).
Short Answer
The general solution of \({e^{{\bf{A}}t}}\)found using MATLAB is \(X = \left( {\begin{array}{*{20}{c}}{{c_1}\left( {3{e^{ - 2t}} - 2{e^{ - t}}} \right) + {c_3}\left( {6{e^{ - t}} - 6{e^{ - 2t}}} \right)}\\{{c_2}\left( {4{e^{ - 2t}} - 3{e^{ - t}}} \right) + {c_4}\left( {4{e^{ - 2t}} - 4{e^{ - t}}} \right)}\\{{c_1}\left( {{e^{ - 2t}} - {e^{ - t}}} \right) + {c_3}\left( {3{e^{ - t}} - 2{e^{ - 2t}}} \right)}\\{{c_2}\left( {3{e^{ - t}} - 3{e^{ - 2t}}} \right) + {c_4}\left( {4{e^{ - t}} - 3{e^{ - 2t}}} \right)}\end{array}} \right)\).