\(\underline {{\rm{ For }}{\lambda _1}} = i:\)
\((A - (i)I\mid 0) = \left( {\begin{array}{*{20}{c}}{0 - i}&1&0\\{ - 1}&{0 - i}&0\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - i}&1&0\\{ - 1}&{ - i}&0\end{array}} \right)\)
Apply row operation\(( - i){R_2} + {R_1} \to {R_2}\):
\( = \left( {\begin{array}{*{20}{c}}{ - i}&1&0\\0&0&0\end{array}} \right)\)
So here we have a single equation,
\( - i{k_1} + {k_2} = 0\;\;\; \to \;\;\;{k_2} = i{k_1}\)
Choosing\({k_1} = 1\)yields\({k_2} = i\).
This gives an eigenvector:
\(K = \left( {\begin{array}{*{20}{l}}1\\i\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right) + i\left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)\)
And column vectors:
\({B_1} = \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right),\;\;\; and \;\;\;{B_2} = \left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)\)
Also,
\(\lambda = \alpha + \beta i\;\;\; \to \;\;\;\lambda = 0 + i\)
Where\(\alpha = 0\)and\(\beta = 1\)
Therefore,
\({X_1} = \left[ {{B_1}cos\beta t - {B_2}sin\beta t} \right]{e^{\alpha t}} = \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)cost - \left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)sint = \left( {\begin{array}{*{20}{r}}{cost}\\{ - sint}\end{array}} \right)\)
And
\({X_2} = \left[ {{B_2}cos\beta t + {B_1}sin\beta t} \right]{e^{\alpha t}} = \left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)cost + \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)sint = \left( {\begin{array}{*{20}{c}}{sint}\\{cost}\end{array}} \right)\)
Hence, the complementary function is
\({X_{\bf{c}}} = {c_1}\left( {\begin{array}{*{20}{r}}{\cos t}\\{ - \sin t}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{l}}{\sin t}\\{\cos t}\end{array}} \right)\)