Chapter 8: Q27E (page 366)
(a) Use (1) to find the general solution of \({{\bf{X}}^\prime } = \left( {\begin{array}{*{20}{l}}4&2\\3&3\end{array}} \right){\bf{X}}\)Use a CAS to find \({e^{At}}.\)Then use the computer to find eigenvalues and eigenvectors of the coefficient matrix \({\bf{A}} = \left( {\begin{array}{*{20}{l}}4&2\\3&3\end{array}} \right)\)and form the general solution in the manner of Section 8.2. Finally, reconcile the two forms of the general solution of the system.
(b) Use (1) to find the general solution of \({{\bf{X}}^\prime } = \left( {\begin{array}{*{20}{r}}{ - 3}&{ - 1}\\2&{ - 1}\end{array}} \right){\bf{X}}\) Use a CAS to find \({e^{A{\rm{. }}}}.\) In the case of complex output, utilize the software to do the simplification; for example, in Mathematica, if \({\bf{m}} = \) Matrix Exp[A t] has complex entries, then try the command Simplify[Complex Expand[m]].
Short Answer
(a) The general solution of \(X' = \left( {\begin{array}{*{20}{l}}4&2\\3&3\end{array}} \right)X\)
(b)The general solution of \({{\bf{X}}^\prime } = \left( {\begin{array}{*{20}{r}}{ - 3}&{ - 1}\\2&{ - 1}\end{array}} \right){\bf{X}}.\)