The entries in \({X_1}\)form the first column of\(\Phi (t)\), and the entries in \({X_2}\)form the second column of\(\Phi (t)\).
Therefore,
\(\Phi (t) = \left( {\begin{array}{*{20}{r}}{ - {e^t}\sin t}&{{e^t}\cos t}\\{{e^t}\cos t}&{{e^t}\sin t}\end{array}} \right)\)
We want to make sure that \(\Phi (t)\) is an invertible matrix by checking the determinant, where
\(|\Phi (t)| = \left| {\begin{array}{*{20}{r}}{ - {e^t}\sin t}&{{e^t}\cos t}\\{{e^t}\cos t}&{{e^t}\sin t}\end{array}} \right|\)
\( = - {e^{2t}}{\sin ^2}t - {e^{2t}}{\cos ^2}t\)
\( = - {e^{2t}}\left( {{{\sin }^2}t + {{\cos }^2}t} \right)\)
\( = - {e^{2t}} \ne 0\)
Since the determinant does not equal zero, the matrix is in fact, an invertible matrix.
So now,
\({\Phi ^{ - 1}}(t) = - \frac{1}{{{e^{2t}}}}\left( {\begin{array}{*{20}{r}}{{e^t}\sin t}&{ - {e^t}\cos t}\\{ - {e^t}\cos t}&{ - {e^t}\sin t}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - {e^{ - t}}\sin t}&{{e^{ - t}}\cos t}\\{{e^{ - t}}\cos t}&{{e^{ - t}}\sin t}\end{array}} \right)\)
Obtaining the particular solution,
\({X_{\bf{p}}} = \Phi (t)\int {{\Phi ^{ - 1}}} (t)F(t)dt\)
\( = \left( {\begin{array}{*{20}{r}}{ - {e^t}\sin t}&{{e^t}\cos t}\\{{e^t}\cos t}&{{e^t}\sin t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{r}}{ - {e^{ - t}}\sin t}&{{e^{ - t}}\cos t}\\{{e^{ - t}}\cos t}&{{e^{ - t}}\sin t}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right){e^t}dt\)
\( = \left( {\begin{array}{*{20}{c}}{ - {e^t}\sin t}&{{e^t}\cos t}\\{{e^t}\cos t}&{{e^t}\sin t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{ - \cos t\sin t + \cos t\sin t}\\{{{\cos }^2}t + {{\sin }^2}t}\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{r}}{ - {e^t}\sin t}&{{e^t}\cos t}\\{{e^t}\cos t}&{{e^t}\sin t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{r}}{ - {e^t}\sin t}&{{e^t}\cos t}\\{{e^t}\cos t}&{{e^t}\sin t}\end{array}} \right)\left( {\begin{array}{*{20}{l}}0\\t\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{{e^t}\cos t}\\{{e^t}\sin t}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right){e^t}\)
Finally, the general solution of the system is
\(X(t) = {X_{\bf{c}}} + {X_{\bf{p}}}\)\( = {c_1}\left( {\begin{array}{*{20}{r}}{ - \sin t}\\{\cos t}\end{array}} \right){e^t} + {c_2}\left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right){e^t}\)
Therefore, the general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{r}}1&{ - 1}\\1&1\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right){e^t}\) is \(X(t) = {c_1}\left( {\begin{array}{*{20}{r}}{ - \sin t}\\{\cos t}\end{array}} \right){e^t} + {c_2}\left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right){e^t}\)