The entries in \({X_1}\)form the first column of\(\Phi (t)\), and the entries in \({X_2}\)form the second column of\(\Phi (t)\).
Therefore,
\(\Phi (t) = \left( {\begin{array}{*{20}{r}}{ - \sin t}&{\cos t}\\{\cos t}&{\sin t}\end{array}} \right)\)
We want to make sure that \(\Phi (t)\)is an invertible matrix by checking the determinant, where
\(|\Phi (t)|{\rm{ }} = \left| {\begin{array}{*{20}{r}}{ - \sin t}&{\cos t}\\{\cos t}&{\sin t}\end{array}} \right|\)
\( = - {\sin ^2}t - {\cos ^2}t\)
\( = - \left( {{{\sin }^2}t + {{\cos }^2}t} \right)\)
\( = - 1 \ne 0\)
Since the determinant does not equal zero, the matrix is in fact, an invertible matrix. \({\Phi ^{ - 1}}(t) = - 1\left( {\begin{array}{*{20}{c}}{\sin t}&{ - \cos t}\\{ - \cos t}&{ - \sin t}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - \sin t}&{\cos t}\\{\cos t}&{\sin t}\end{array}} \right)\)
Obtaining the particular solution,
\({X_{\bf{p}}} = \Phi (t)\int {{\Phi ^{ - 1}}} (t)F(t)dt\)
\( = \left( {\begin{array}{*{20}{r}}{ - \sin t}&{\cos t}\\{\cos t}&{\sin t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{r}}{ - \sin t}&{\cos t}\\{\cos t}&{\sin t}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\sec t}\\0\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{r}}{ - \sin t}&{\cos t}\\{\cos t}&{\sin t}\end{array}} \right)d\left( {\begin{array}{*{20}{r}}{ - \sin t\sec t}\\{\cos t\sec t}\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{c}}{ - \sin t}&{\cos t}\\{\cos t}&{\sin t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{ - \tan t}\\1\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{c}}{ - \sin t}&{\cos t}\\{\cos t}&{\sin t}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\ln |\cos t|}\\t\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{r}}{ - \ln |\cos t|\sin t + t\cos t}\\{\ln |\cos t|\cos t + t\sin t}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{r}}{\cos t}\\{\sin t}\end{array}} \right)t + \left( {\begin{array}{*{20}{r}}{ - \sin t}\\{\cos t}\end{array}} \right)\ln |\cos t|\)
Finally, the general solution of the system is
\(X(t) = {X_{\bf{c}}} + {X_{\bf{p}}}\)
\( = {c_1}\left( {\begin{array}{*{20}{r}}{ - \sin t}\\{\cos t}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right)t + \left( {\begin{array}{*{20}{r}}{ - \sin t}\\{\cos t}\end{array}} \right)\ln |\cos t|\)
Therefore, the general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{r}}0&{ - 1}\\1&0\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}{\sec t}\\0\end{array}} \right)\) is \({\bf{X}}(t) = {c_1}\left( {\begin{array}{*{20}{c}}{ - \sin t}\\{\cos t}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{\cos t}\\{\sin t}\end{array}} \right)t + \left( {\begin{array}{*{20}{r}}{ - \sin t}\\{\cos t}\end{array}} \right)\ln |\cos t|\)