The entries in \({X_1}\)form the first column of\(\Phi (t)\), and the entries in \({X_2}\)form the second column of\(\Phi (t)\).
Therefore,
\(\Phi (t) = \left( {\begin{array}{*{20}{c}}{{e^{2t}}}&{2{e^t}}\\{{e^{2t}}}&{{e^t}}\end{array}} \right)\)
We want to make sure that \(\Phi (t)\) is an invertible matrix by checking the determinant, where
\(|\Phi (t)| = \left| {\begin{array}{*{20}{c}}{{e^{2t}}}&{2{e^t}}\\{{e^{2t}}}&{{e^t}}\end{array}} \right|\)
\( = \left( {{e^{2t}}} \right)\left( {{e^t}} \right) - \left( {2{e^t}} \right)\left( {{e^{2t}}} \right)\)
\( = {e^{3t}} - 2{e^{3t}}\)
\( = - {e^{3t}} \ne 0\)
Since the determinant does not equal zero, the matrix is in fact, an invertible matrix.
So now,
\({\Phi ^{ - 1}}(t) = \frac{1}{{ - {e^{3t}}}}\left( {\begin{array}{*{20}{c}}{{e^t}}&{ - 2{e^t}}\\{ - {e^{2t}}}&{{e^{2t}}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - {e^{ - 2t}}}&{2{e^{ - 2t}}}\\{{e^{ - t}}}&{ - {e^{ - t}}}\end{array}} \right)\)
Obtaining the particular solution,
\({X_{\bf{p}}} = \Phi (t)\int {{\Phi ^{ - 1}}} (t)F(t)dt\)
\( = \left( {\begin{array}{*{20}{c}}{{e^{2t}}}&{2{e^t}}\\{{e^{2t}}}&{{e^t}}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{ - {e^{ - 2t}}}&{2{e^{ - 2t}}}\\{{e^{ - t}}}&{ - {e^{ - t}}}\end{array}} \right)\left( {\begin{array}{*{20}{r}}1\\{ - 1}\end{array}} \right){e^t}dt\)
\( = \left( {\begin{array}{*{20}{c}}{{e^{2t}}}&{2{e^t}}\\{{e^{2t}}}&{{e^t}}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{ - {e^{ - t}} - 2{e^{ - t}}}\\{1 + 1}\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{c}}{{e^{2t}}}&{2{e^t}}\\{{e^{2t}}}&{{e^t}}\end{array}} \right)/\left( {\begin{array}{*{20}{c}}{ - 3{e^{ - t}}}\\2\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{c}}{{e^{2t}}}&{2{e^t}}\\{{e^{2t}}}&{{e^t}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{3{e^{ - t}}}\\{2t}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{l}}{3{e^t} + 4t{e^t}}\\{3{e^t} + 2t{e^t}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}4\\2\end{array}} \right)t{e^t}\)
Finally, the general solution of the system is
\(X(t) = {X_{\bf{c}}} + {X_{\bf{p}}}\)
\( = {c_1}\left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right){e^{2t}} + {c_2}\left( {\begin{array}{*{20}{l}}2\\1\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}4\\2\end{array}} \right)t{e^t}\)
Therefore, the general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{r}}0&2\\{ - 1}&3\end{array}} \right)X + \left( {\begin{array}{*{20}{r}}1\\{ - 1}\end{array}} \right){e^t}\) is \(X(t) = {c_1}\left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right){e^{2t}} + {c_2}\left( {\begin{array}{*{20}{l}}2\\1\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}4\\2\end{array}} \right)t{e^t}\)