The entries in \({X_1}\)$ form the first column of\(\Phi (t)\), and the entries in \({X_2}\)form the second column of\(\Phi (t)\).
Therefore,
\(\Phi (t) = \left( {\begin{array}{*{20}{c}}{10{e^{1.5t}}}&{2{e^{0.5t}}}\\{3{e^{1.5t}}}&{{e^{0.5t}}}\end{array}} \right)\)
We want to make sure that \(\Phi (t)\)is an invertible matrix by checking the determinant, where
\(|\Phi (t)|{\rm{ }} = \left| {\begin{array}{*{20}{c}}{10{e^{1.5t}}}&{2{e^{0.5t}}}\\{3{e^{1.5t}}}&{{e^{0.5t}}}\end{array}} \right|\)
\( = \left( {10{e^{1.5t}}} \right)\left( {{e^{0.5t}}} \right) - \left( {2{e^{0.5t}}} \right)\left( {3{e^{1.5t}}} \right)\)
\( = 10{e^2} - 6{e^2}\)
\( = 4{e^2} \ne 0\)
Since the determinant does not equal zero, the matrix is in fact, an invertible matrix.
So now, \({\Phi ^{ - 1}}(t) = \frac{1}{{4{e^2}}}\left( {\begin{array}{*{20}{c}}{{e^{0.5t}}}&{ - 2{e^{0.5t}}}\\{ - 3{e^{1.5t}}}&{10{e^{1.5t}}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{\frac{1}{4}{e^{ - 1.5t}}}&{ - \frac{1}{2}{e^{ - 1.5t}}}\\{ - \frac{3}{4}{e^{ - 0.5t}}}&{\frac{5}{2}{e^{ - 0.5t}}}\end{array}} \right)\)
Obtaining the particular solution,
\({X_{\bf{p}}} = \Phi (t)\int {{\Phi ^{ - 1}}} (t)F(t)dt\)
\( = \left( {\begin{array}{*{20}{c}}{10{e^{1.5t}}}&{2{e^{0.5t}}}\\{3{e^{1.5t}}}&{{e^{0.5t}}}\end{array}} \right)/\left( {\begin{array}{*{20}{c}}{\frac{1}{4}{e^{ - 1.5t}}}&{ - \frac{1}{2}{e^{ - 1.5t}}}\\{ - \frac{3}{4}{e^{ - 0.5t}}}&{\frac{5}{2}{e^{ - 0.5t}}}\end{array}} \right)\left( {\begin{array}{*{20}{r}}1\\{ - 1}\end{array}} \right){e^{0.5t}}dt\)
\( = \left( {\begin{array}{*{20}{c}}{10{e^{1.5t}}}&{2{e^{0.5t}}}\\{3{e^{1.5t}}}&{{e^{0.5t}}}\end{array}} \right)/\left( {\begin{array}{*{20}{c}}{\frac{1}{4}{e^{ - t}} + \frac{1}{2}{e^{ - t}}}\\{ - \frac{3}{4} - \frac{5}{2}}\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{c}}{10{e^{1.5t}}}&{2{e^{0.5t}}}\\{3{e^{1.5t}}}&{{e^{0.5t}}}\end{array}} \right)/\left( {\begin{array}{*{20}{c}}{\frac{3}{4}{e^{ - t}}}\\{ - \frac{{13}}{4}}\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{c}}{10{e^{1.5t}}}&{2{e^{0.5t}}}\\{3{e^{1.5t}}}&{{e^{0.5t}}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - \frac{3}{4}{e^{ - t}}}\\{ - \frac{{13}}{4}t}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - \frac{{15}}{2}{e^{0.5t}} - \frac{{13}}{2}t{e^{0.5t}}}\\{ - \frac{9}{4}{e^{0.5t}} - \frac{{13}}{4}t{e^{0.5t}}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - \frac{{15}}{2}}\\{ - \frac{9}{4}}\end{array}} \right){e^{0.5t}} + \left( {\begin{array}{*{20}{c}}{ - \frac{{13}}{2}}\\{ - \frac{{13}}{4}}\end{array}} \right)t{e^{0.5t}}\)
Finally, the general solution of the system is
\(X(t){\rm{ }} = {X_{\bf{c}}} + {X_{\bf{p}}}\)
\( = {c_1}\left( {\begin{array}{*{20}{c}}{10}\\3\end{array}} \right){e^{1.5t}} + {c_2}\left( {\begin{array}{*{20}{l}}2\\1\end{array}} \right){e^{0.5t}} + \left( {\begin{array}{*{20}{r}}{ - \frac{{15}}{2}}\\{ - \frac{9}{4}}\end{array}} \right){e^{0.5t}} + \left( {\begin{array}{*{20}{c}}{ - \frac{{13}}{2}}\\{ - \frac{{13}}{4}}\end{array}} \right)t{e^{0.5t}}\)
Therefore, the general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{c}}3&{ - 5}\\{\frac{3}{4}}&{ - 1}\end{array}} \right)X + \left( {\begin{array}{*{20}{r}}1\\{ - 1}\end{array}} \right){e^{t/2}}\) is \(X(t) = {c_1}\left( {\begin{array}{*{20}{c}}{10}\\3\end{array}} \right){e^{1.5t}} + {c_2}\left( {\begin{array}{*{20}{c}}2\\1\end{array}} \right){e^{0.5t}} + \left( {\begin{array}{*{20}{c}}{ - \frac{{15}}{2}}\\{ - \frac{9}{4}}\end{array}} \right){e^{0.5t}} + \left( {\begin{array}{*{20}{c}}{ - \frac{{13}}{2}}\\{ - \frac{{13}}{4}}\end{array}} \right)t{e^{0.5t}}\).