Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems \({\bf{13}} - {\bf{32}}\)use variation of parameters to solve the given nonhomogeneous system.

\({\bf{13}}.\)\(\frac{{dx}}{{dt}} = 3x - 3y + 4\)

\(\frac{{dy}}{{dt}} = 2x - 2y - 1\)

Short Answer

Expert verified

The general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{l}}3&{ - 3}\\2&{ - 2}\end{array}} \right)X + \left( {\begin{array}{*{20}{r}}4\\{ - 1}\end{array}} \right)\) is \(X = {c_1}\left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}{ - 11}\\{ - 11}\end{array}} \right)t + \left( {\begin{array}{*{20}{l}}{ - 15}\\{ - 10}\end{array}} \right)\)

Step by step solution

01

Determine the complex Eigen values

The polynomial of degree \(n\) of the variable \(\lambda \) is the characteristic polynomial of the \(n \times n\) matrix\(A\).

\(p(\lambda ) = \det (\lambda I - A)\)

Its root is the eigenvalue of\(A\).

02

Determine the Eigen values

Given

\(\left\{ {\begin{array}{*{20}{l}}{\frac{{dx}}{{dt}} = 3x - 3y + 4}\\{\frac{{dy}}{{dt}} = 2x - 2y - 1}\end{array}} \right.\)

Which can be written in the matrix form

\({X^\prime } = \left( {\begin{array}{*{20}{l}}3&{ - 3}\\2&{ - 2}\end{array}} \right)X + \left( {\begin{array}{*{20}{r}}4\\{ - 1}\end{array}} \right)\)

Where

\(A = \left( {\begin{array}{*{20}{l}}3&{ - 3}\\2&{ - 2}\end{array}} \right)\), and \(F(t) = \left( {\begin{array}{*{20}{r}}4\\{ - 1}\end{array}} \right)\)

Obtaining the eigenvalues of the coefficient matrix,

\(\det (A - \lambda I) = 0\;\;\; \to \left| {\begin{array}{*{20}{c}}{3 - \lambda }&{ - 3}\\2&{ - 2 - \lambda }\end{array}} \right| = 0\)

\((3 - \lambda )( - 2 - \lambda ) + 6 = 0\)

\( - 6 - 3\lambda + 2\lambda + {\lambda ^2} + 6 = 0\)

\({\lambda ^2} - \lambda = 0\)

\(\lambda (\lambda - 1) = 0\)

So our eigenvalues are \({\lambda _1} = 0\)and\({\lambda _2} = 1\).

03

Determine the Eigen vector and the corresponding solution vector

For\({\lambda _1} = 0\):

\((A - 0I\mid 0) = \left( {\begin{array}{*{20}{c}}{3 - 0}&{ - 3}&0\\2&{ - 2 - 0}&0\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{c}}3&{ - 3}&0\\2&{ - 2}&0\end{array}} \right)\)

Apply row operation\(\frac{3}{2}{R_2} - {R_1} \to {R_1}\):

\( = \left( {\begin{array}{*{20}{c}}3&{ - 3}&0\\0&0&0\end{array}} \right)\)

So here we have

\(3{k_1} - 3{k_2} = 0\;\;\; \to \;\;\;{k_1} = {k_2}\)

Choosing \({k_2} = 1\)yields\({k_1} = 1\).

This gives an eigenvector and a corresponding solution vector

\({K_{\bf{1}}} = \left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right),\;\;\;{X_{\bf{1}}} = \left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right)\)

For \({\lambda _2} = 1:\)

\((A - I\mid 0) = \left( {\begin{array}{*{20}{c}}{3 - 1}&{ - 3}&0\\2&{ - 2 - 1}&0\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{c}}2&{ - 3}&0\\2&{ - 3}&0\end{array}} \right)\)

Apply row operation \({R_2} - {R_1} \to {R_1}\) :

\( = \left( {\begin{array}{*{20}{c}}2&{ - 3}&0\\0&0&0\end{array}} \right)\)

So here we have

\(2{k_1} - 3{k_2} = 0\;\;\; \to \;\;\;{k_1} = \frac{3}{2}{k_2}\)

Choosing \({k_2} = 2\)yields\({k_1} = 3\).

This gives an eigenvector and a corresponding solution vector

\({K_2} = \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right),\;\;\;{X_2} = \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){e^t}\)

Hence, the complementary solution is

\({X_{\bf{c}}} = {c_1}\left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){e^t}\)

04

Determine the general solution of the system

The entries in \({X_1}\)form the first column of\(\Phi (t)\), and the entries in \({X_2}\)form the second column of\(\Phi (t)\).

Therefore,

\(\Phi (t) = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)\)

We want to make sure that \(\Phi (t)\)is an invertible matrix by checking the determinant, where

\(|\Phi (t)| = \left| {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right|\)

\( = 2{e^t} - 3{e^t}\)

\( = - {e^t} \ne 0\)

Since the determinant does not equal zero, the matrix is in fact, an invertible matrix.

So now,

\({\Phi ^{ - 1}}(t) = - \frac{1}{{{e^t}}}\left( {\begin{array}{*{20}{c}}{2{e^t}}&{ - 3{e^t}}\\{ - 1}&1\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{c}}{ - 2}&3\\{{e^{ - t}}}&{ - {e^{ - t}}}\end{array}} \right)\)

Obtaining the particular solution,

\({X_{\bf{p}}} = \Phi (t)\int {{\Phi ^{ - 1}}} (t)F(t)dt\)

\( = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{ - 2}&3\\{{e^{ - t}}}&{ - {e^{ - t}}}\end{array}} \right)\left( {\begin{array}{*{20}{r}}4\\{ - 1}\end{array}} \right)dt\)

\( = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)/\left( {\begin{array}{*{20}{c}}{ - 11}\\{5{e^{ - t}}}\end{array}} \right)dt\)

\( = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 11t}\\{ - 5{e^{ - t}}}\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{l}}{ - 11}\\{ - 11}\end{array}} \right)t + \left( {\begin{array}{*{20}{l}}{ - 15}\\{ - 10}\end{array}} \right)\)

Therefore, the general solution of the system is

\(X = {X_{\bf{c}}} + {X_{\bf{p}}}\)

\( = {c_1}\left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}{ - 11}\\{ - 11}\end{array}} \right)t + \left( {\begin{array}{*{20}{l}}{ - 15}\\{ - 10}\end{array}} \right)\)

Therefore, the general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{l}}3&{ - 3}\\2&{ - 2}\end{array}} \right)X + \left( {\begin{array}{*{20}{r}}4\\{ - 1}\end{array}} \right)\) is \(X = {c_1}\left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}{ - 11}\\{ - 11}\end{array}} \right)t + \left( {\begin{array}{*{20}{l}}{ - 15}\\{ - 10}\end{array}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free