The entries in \({X_1}\)form the first column of\(\Phi (t)\), and the entries in \({X_2}\)form the second column of\(\Phi (t)\).
Therefore,
\(\Phi (t) = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)\)
We want to make sure that \(\Phi (t)\)is an invertible matrix by checking the determinant, where
\(|\Phi (t)| = \left| {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right|\)
\( = 2{e^t} - 3{e^t}\)
\( = - {e^t} \ne 0\)
Since the determinant does not equal zero, the matrix is in fact, an invertible matrix.
So now,
\({\Phi ^{ - 1}}(t) = - \frac{1}{{{e^t}}}\left( {\begin{array}{*{20}{c}}{2{e^t}}&{ - 3{e^t}}\\{ - 1}&1\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - 2}&3\\{{e^{ - t}}}&{ - {e^{ - t}}}\end{array}} \right)\)
Obtaining the particular solution,
\({X_{\bf{p}}} = \Phi (t)\int {{\Phi ^{ - 1}}} (t)F(t)dt\)
\( = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{ - 2}&3\\{{e^{ - t}}}&{ - {e^{ - t}}}\end{array}} \right)\left( {\begin{array}{*{20}{r}}4\\{ - 1}\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)/\left( {\begin{array}{*{20}{c}}{ - 11}\\{5{e^{ - t}}}\end{array}} \right)dt\)
\( = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{ - 11t}\\{ - 5{e^{ - t}}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{l}}1&{3{e^t}}\\1&{2{e^t}}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{l}}{ - 11}\\{ - 11}\end{array}} \right)t + \left( {\begin{array}{*{20}{l}}{ - 15}\\{ - 10}\end{array}} \right)\)
Therefore, the general solution of the system is
\(X = {X_{\bf{c}}} + {X_{\bf{p}}}\)
\( = {c_1}\left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}{ - 11}\\{ - 11}\end{array}} \right)t + \left( {\begin{array}{*{20}{l}}{ - 15}\\{ - 10}\end{array}} \right)\)
Therefore, the general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{l}}3&{ - 3}\\2&{ - 2}\end{array}} \right)X + \left( {\begin{array}{*{20}{r}}4\\{ - 1}\end{array}} \right)\) is \(X = {c_1}\left( {\begin{array}{*{20}{l}}1\\1\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){e^t} + \left( {\begin{array}{*{20}{l}}{ - 11}\\{ - 11}\end{array}} \right)t + \left( {\begin{array}{*{20}{l}}{ - 15}\\{ - 10}\end{array}} \right)\)