Since\(F(t) = \left( {\begin{array}{*{20}{l}}{60}\\{60}\end{array}} \right)\), we shall try to find a particular solution of the system that possesses the same form:
\({X_{\bf{p}}} = \left( {\begin{array}{*{20}{l}}{{a_1}}\\{{a_2}}\end{array}} \right)\)
Differentiating,
\(X_{\rm{p}}^\prime = \left( {\begin{array}{*{20}{l}}0\\0\end{array}} \right)\)
Substituting into\(\left( 1 \right)\),
\(\left( {\begin{array}{*{20}{l}}0\\0\end{array}} \right) = \left( {\begin{array}{*{20}{l}}{ - 2}&{ - 2}\\{ - 2}&{ - 5}\end{array}} \right)\left( {\begin{array}{*{20}{l}}{{a_1}}\\{{a_2}}\end{array}} \right) + \left( {\begin{array}{*{20}{l}}{60}\\{60}\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{l}}{ - 2{a_1} - 2{a_2}}\\{ - 2{a_1} - 5{a_2}}\end{array}} \right) + \left( {\begin{array}{*{20}{l}}{60}\\{60}\end{array}} \right)\)
So here we have
\( - 2{a_1} - 2{a_2} = - 60.....(1)\)
And,
\( - 2{a_1} - 5{a_2} = - 60........(2)\)
Multiplying \(\left( 2 \right)\) from \(\left( 1 \right)\) yields
\(3{a_2} = 0\)
\({a_2} = 0\)
To solve for \({a_1}\) we substitute the value we obtained for \({a_1}\) into one of the equations above,
\( - 2{a_1} - 2(0) = - 60\;\;\; \to \;\;\;{a_1} = 30\)
Therefore, the particular solution is
\({X_{\bf{p}}} = \left( {\begin{array}{*{20}{c}}{30}\\0\end{array}} \right)\)
The general solution of the system is
\(X = {X_{\bf{c}}} + {X_{\bf{p}}}\)
\( = {c_1}\left( {\begin{array}{*{20}{r}}{ - 2}\\1\end{array}} \right){e^{ - t}} + {c_2}\left( {\begin{array}{*{20}{l}}1\\2\end{array}} \right){e^{ - 6t}} + \left( {\begin{array}{*{20}{c}}{30}\\0\end{array}} \right)\)
Applying the initial value condition
\(X(0) = \left( {\begin{array}{*{20}{l}}0\\0\end{array}} \right)\)
\(\left( {\begin{array}{*{20}{l}}0\\0\end{array}} \right) = {c_1}\left( {\begin{array}{*{20}{r}}{ - 2}\\1\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{l}}1\\2\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{30}\\0\end{array}} \right)\)
Where,
\( - 2{c_1} + {c_2} = - 30\)
\({c_1} + 2{c_2} = 0\)
Rearranging equation \(\left( 1 \right).\)
\({c_2} = 2{c_1} - 30\)
Substituting into \(\left( 2 \right),\)
\({c_1} + 2\left( {2{c_1} - 30} \right) = 0\)
\({c_1} + 4{c_1} - 60 = 0\)
\(5{c_1} = 60\)
\({c_1} = 12\)
To solve for \({c_2}\)we substitute the value we obtained for \({c_1}\) into one of the equations above,
\(12 + 2{c_2} = 0\;\;\; \to \;\;\;{c_2} = - 6\)
Therefore, the solution is
\(X(t) = 12\left( {\begin{array}{*{20}{r}}{ - 2}\\1\end{array}} \right){e^{ - t}} - 6\left( {\begin{array}{*{20}{l}}1\\2\end{array}} \right){e^{ - 6t}} + \left( {\begin{array}{*{20}{c}}{30}\\0\end{array}} \right)\)
\( = \left( {\begin{array}{*{20}{c}}{ - 24}\\{12}\end{array}} \right){e^{ - t}} + \left( {\begin{array}{*{20}{c}}{ - 6}\\{ - 12}\end{array}} \right){e^{ - 6t}} + \left( {\begin{array}{*{20}{c}}{30}\\0\end{array}} \right)\)
\(\left( {\begin{array}{*{20}{l}}{{i_2}}\\{{i_3}}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{ - 24{e^{ - t}} - 6{e^{ - 6t}} + 30}\\{12{e^{ - t}} - 12{e^{ - 6t}}}\end{array}} \right)\)
Therefore, the general solution of the system is\(X(t) = 12\left( {\begin{array}{*{20}{r}}{ - 2}\\1\end{array}} \right){e^{ - t}} - 6\left( {\begin{array}{*{20}{l}}1\\2\end{array}} \right){e^{ - 6t}} + \left( {\begin{array}{*{20}{c}}{30}\\0\end{array}} \right)\).