\(y(x) = \sum\limits_{n = 0}^\infty {{c_n}} {x^{n + r}}(*)\)
Differentiating\((*)\), we get
\({y'}\)\( = \sum\limits_{n = 0}^\infty {(n + r)} {c_n}{x^{n + r - 1}}\)
\( = \sum\limits_{n = 0}^\infty {(n + r)} (n + r - 1){c_n}{x^{n + r - 2}}\)
Replacing the equation (1) and equation (2) in the initial differential equation, we get
\(0 = 2x\sum\limits_{n = 0}^\infty {(n + r)} (n + r - 1){c_n}{x^{n + r - 2}} + \sum\limits_{n = 0}^\infty {(n + r)} {c_n}{x^{n + r - 1}} + \sum\limits_{n = 0}^\infty {{c_n}} {x^{n + r}}\)
\( = 2\sum\limits_{n = 0}^\infty {(n + r)} (n + r - 1){c_n}{x^{n + r - 1}} + \sum\limits_{n = 0}^\infty {(n + r)} {c_n}{x^{n + r - 1}} + \sum\limits_{n = 0}^\infty {{c_n}} {x^{n + r}}\)
\( = {x^r}\left( {r(2r - 1){c_0}{x^{ - 1}} + 2\sum\limits_{n = 1}^\infty {(n + r)} (n + r - 1){c_n}{x^{n - 1}} + \sum\limits_{n = 1}^\infty {(n + r)} {c_n}{x^{n - 1}} + \sum\limits_{n = 0}^\infty {{c_n}} {x^n}} \right)\)
For the first and the second summation, we let\(k = n - 1\). For the third summation, we let\(k = n\). Hence
\( = {x^r}\left( {r(2r - 1){c_0}{x^{ - 1}} + 2\sum\limits_{k = 0}^\infty {(k + 1 + r)} (k + r){c_{k + 1}}{x^k} + \sum\limits_{k = 0}^\infty {(k + 1 + r)} {c_{k + 1}}{x^k} + \sum\limits_{k = 0}^\infty {{c_k}} {x^k}} \right)\)
\( = {x^r}\left( {r(2r - 1){c_0}{x^{ - 1}} + 2\sum\limits_{k = 0}^\infty {\left( {(k + 1 + r)(2k + 2r + 1){c_{k + 1}} + {c_k}} \right)} {x^k}} \right)\)
From this, we can see that
\(\begin{aligned}{{}{r}}{r(2r - 1) = 0}\\{{r_1} = 0'U {r_2} = \frac{1}{2}}\end{aligned}\)
and
\({c_{k + 1}} = \frac{{{c_k}}}{{(k + 1 + r)(2k + 2r + 1)}}\)
- For\({r_1} = 0\), we have
\({c_{k + 1}} = - \frac{{{c_k}}}{{(k + 1)(2k + 1)}}\;\;\;k = 0,1,2 \ldots \)
\(k = 0 \Rightarrow {c_1} = - \frac{{{c_0}}}{1} = - {c_0}\)
\(k = 1 \Rightarrow {c_2} = - \frac{{{c_1}}}{6} = \frac{{{c_0}}}{6}\)
\(k = 2 \Rightarrow {c_3} = - \frac{{{c_2}}}{{15}} = - \frac{{{c_0}}}{{90}}\)
For\({r_2} = \frac{1}{2}\), we have
\({c_{k + 1}} = - \frac{{{c_k}}}{{(2k + 3)(k + 1)}}\;\;\;k = 0,1,2 \ldots \)
\(k = 0 \Rightarrow {c_1} = - \frac{{{c_0}}}{3}\)
\(k = 1 \Rightarrow {c_2} = \frac{{{c_0}}}{{30}}\)
\(k = 2 \Rightarrow {c_3} = - \frac{{{c_0}}}{{630}}\)