Chapter 6: 6.3-18E (page 260) URL copied to clipboard! Now share some education! In Problems 15–24,x = 0is a regular singular point of the givendifferential equation. Show that the indicial roots of the singularity do not differ by an integer. Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on(0,∞).2x2y''-xy'+(x2+1)y=0 Short Answer Expert verified The solution is:y=C1x1-110x2+1180x4+…+C2x1/21-16x2+1168x4+… Step by step solution 01 Given Information. The given problem is2x2y''-xy'+x2+1y=0 02 Use Differentiation. y=∑n=0∞cnxn+r …(1)Differentiate the above equation, we get:y'=∑n=0∞cn(n+r)xn+r-1 …(2)y''=∑n=0∞cn(n+r)(n+r-1)xn+r-2 …(3) 03 Substitute the equation. fy'',y',y=2x2∑n=0∞cn(n+r)(n+r-1)xn+r-2-x∑n=0∞cn(n+r)xn+r-1+x2+1∑n=0∞cnxn+r=∑n=0∞2cn(n+r)(n+r-1)xn+r⏟a0→xr-∑n=0∞cn(n+r)xn+r⏟a0→xr+∑n=0∞cnxn+r+2⏟a0→xr+2+∑n=0∞cnxn+r⏟a0→xrfy'',y',y=[2c0r(r-1)xr+2c1(r+1)(r)xr+1+∑n=2∞2cn(n+r)(n+r-1)xn+r⏟a2→xr+2-[c0rxr+c1(r+1)xr+1+∑n=2∞cn(n+r)xn+r⏟a2→xr+2]+∑n=0∞cnxn+r+2⏟a0→xr+2+[c0xr+c1xr+1+∑n=2∞cnxn+r⏟a2→xr+2fy'',y',y=2c0r(r-1)xr+2c1(r+1)(r)xr+1+∑n=2∞2cn(n+r)(n+r-1)xn+r-c0rxr+c1(r+1)xr+1+∑n=2∞cn(n+r)xn+r+∑n-2=0∞cn-2x(n-2)+r+2+c0xr+c1xr+1+∑n=2∞cnxn+r=2c0r(r-1)xr+2c1(r+1)(r)xr+1+∑n=2∞2cn(n+r)(n+r-1)xn+r-c0rxr+c1(r+1)xr+1+∑n=2∞cn(n+r)xn+r+∑n=2∞cn-2xn+r+c0xr+c1xr+1+∑n=2∞cnxn+rSolving the above result further, we get:fy'',y',y=[2r(r-1)-r+1]c0xr+[2(r+1)(r)-(r+1)+1]c1xr+1+∑n=2∞2cn(n+r)(n+r-1)-cn(n+r)+cn-2+cnxn+r=2r2-2r-r+1c0xr+2r2+2r-r-1+1c1xr+1+∑n=2∞cn[2(n+r)(n+r-1)-(n+r)+1]+cn-2xn+r=0 04 Identity Property 2r2-2r-r+1=02r2-3r+1=0(2r-1)(r-1)=0r1=1,r2=12Now,c1=0 …(4)cn[2(n+r)(n+r-1)-(n+r)+1]+cn-2=0cn=-cn-2[2(n+r)(n+r-1)-(n+r)+1]For r1 = 1y=∑n=0∞cnxn+1=x∑n=0∞cnxncn=-cn-22(n+1)n-(n+1)+1 ⋯(5)For n = 2c2=-c02·3·2-(2+1)+1=-c010For, n = 3\c3=-c12(4)·3-(3+1)+1=0For, n = 4c4=-c22·5·4-5+1=--c0/1036=c0360y1=xc0+c1x+c2x2+c3x3+c4x4+…=xc0+0·x-110c0x2+0·x3+1180c0x4+…=c0x1-110x2+1180x4+… …(6)Now, we have:For r2= 1/2y=∑n=0∞cnxn+1/2=x1/2∑n=0∞cnxncn=-cn-22(n+1/2)(n-1/2)-(n+1/2)+1, n=2,3,4… …7For, n = 2c2=-c02·5/2·3/2-5/2+1=-c06For, n = 3C3= 0For n = 4c4=-c22·9/2·7/2-9/2+1=--c0/628=c0168Therefore,y2=x1/2c0+c1x+c2x2+c3x3+c4x4+…=x1/2c0+0·x-16c0x2+0·x3+1168c0x4+…=c0x1/21-16x2+1168x4+… …(8)Hence, the answer is:y=C1x1-110x2+1180x4+…+C2x1/21-16x2+1168x4+… Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!