Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems \(5 - 8\)use the Adams-Bashforth-Moulton method to approximate \(y(1.0)\), where \(y(x)\) is the solution of the given initial-value problem. First use \(h = 0.2\)and then use \(h = 0.1\).Use the \(RK4\) method to compute \({y_1},{y_2}\)and \({y_3}\).

\(y' = {(x - y)^2},y(0) = 0\).

Short Answer

Expert verified

The value of\(y(1.0)\) calculated using Adams-Bashforth-Moulton method with \(h = 0.2\) is\({y_5} = 0.24.\)

The value of\(y(1.0)\) calculated using Adams-Bashforth-Moulton method with \(h = 0.1\) is\({y_{10}} = 0.23873.\)

Step by step solution

01

Define Adams-Bashforth-Moulton Method.

  • The Adams–Bashforth-Moulton methods allow us to calculate the estimated solution at a given instant from prior instants' solutions explicitly.
  • Each phase of the Adams–Moulton approach produces an algebraic matrix Riccati equation (AMRE), which is then solved using Newton's method.
  • The predictive formula for this method is,
  • \({y_{n + 1,p}} = {y_n} + \frac{h}{{24}}\left( {55y_n^\cent - 59y_{n - 1}^\cent + 37y_{n - 2}^\cent - 9y_{n - 3}^\cent} \right)\).
02

Find the value of the constants with \(h = 0.2\).

We have the initial-value problem,

\(y' = {(x - y)^2},\quad y(0) = 0\)

and we have to approximate the value \(y(1.0)\) with \(h = 0.2\)using the following technique.

First we have to obtain three approximate values \({y_1},{y_2},{y_3}\)using the formula

\({y_{n + 1}} = {y_n} + \frac{h}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right){\rm{ (1)}}\)

Before that we have to find the constants \({k_1},{k_2},{k_3},{k_4}\)at \(n = 0\)and \(h = 0.2\)as the following.

Since we have \({x_0} = 0,{y_0} = 0\), then we have

\(\begin{aligned}{*{20}{c}}{{k_1} = f\left( {{x_0},{y_0}} \right)}\\{ = {{\left( {{x_0} - {y_0}} \right)}^2}}\\{ = 0}\\{{k_2} = f\left( {{x_0} + \frac{1}{2}h,{y_0} + \frac{1}{2}h{k_1}} \right)}\\{ = {{\left[ {\left( {{x_0} + \frac{1}{2}h} \right) - \left( {{y_0} + \frac{1}{2}h{k_1}} \right)} \right]}^2}}\\{ = {{\left[ {\left( {0 + \frac{1}{2} \times 0.2} \right) - \left( {0 + \frac{1}{2} \times 0.2 \times 0} \right)} \right]}^2}}\\{ = 0.01}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{k_3} = f\left( {{x_0} + \frac{1}{2}h,{y_0} + \frac{1}{2}h{k_2}} \right)}\\{ = {{\left[ {\left( {{x_0} + \frac{1}{2}h} \right) - \left( {{y_0} + \frac{1}{2}h{k_2}} \right)} \right]}^2}}\\{ = {{\left[ {\left( {0 + \frac{1}{2} \times 0.2} \right) - \left( {0 + \frac{1}{2} \times 0.2 \times 0.01} \right)} \right]}^2}}\\{ = {{(0.1 - 0.001)}^2}}\\{ = 0.009801}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{k_4} = f\left( {{x_0} + h,{y_0} + h{k_3}} \right)}\\{ = {{\left[ {\left( {{x_0} + h} \right) - \left( {{y_0} + h{k_2}} \right)} \right]}^2}}\\{ = {{[(0 + 0.2) - (0 + 0.2 \times 0.009081)]}^2}}\\{ = {{(0.2 - 0.0019602)}^2}}\\{ = 0.03922}\end{aligned}\)\(\)

Hence the values of the constants with \(h = 0.2\) are\({k_1} = 0,{k_2} = 0.01,{k_3} = 0.009801,{k_4} = 0.03922\)

03

Find the value of\({y_1}\)with\(h = 0.2\).

We need to find the value of \({y_1}\)by using \((1)\).

\(\begin{aligned}{*{20}{c}}{{y_1} = {y_0} + \frac{h}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right)}\\{ = 0 + \frac{{0.2}}{6}[0 + 2(0.01) + 2(0.009801) + 0.03922]}\\{ = 0 + \frac{{0.2}}{6} \times (0.078822)}\\{ = 0.006274}\end{aligned}\)

After this we can obtain the value of \(y\)for each value of \(x\)until \(x = 0.6\)and \({y_3} = 0.065699\)using the below table.

\(h = 0.2\)

\({x_n}\)

\({k_1} + 2{k_2} + 2{k_3} + {k_4}\)

\({y_n}\)

\(0.00\)

\(6.02008\)

\(0.00\)

\(0.20\)

\(6.17432\)

\(0.006274\)

\(0.40\)

\(6.39923\)

\(0.023349\)

\(0.60\)

\(0.065699\)

Hence the value of \({y_1}\)with \(h = 0.2\) is\(0.006274\).

04

Find the value of the predictor \({y_4}*.\)

We have to find the value of \(y(1.0)\)using Adams-Bashforth-Moulton method. Since we have, \({x_0} = 0,{x_1} = 0.2,{x_2} = 0.4{\rm{,\;}}{x_3} = 0.6\)and the value of \(y\)from the table we can find,

\(\begin{aligned}{*{20}{c}}{y_0^\cent = f\left( {{x_0},{y_0}} \right)}\\{ = {{\left( {{x_0} - {y_0}} \right)}^2}}\\{ = {{(0 - 0)}^2}}\\{ = 0}\\{y_1^\cent = f\left( {{x_1},{y_1}} \right)}\\{ = {{\left( {{x_1} - {y_1}} \right)}^2}}\\{ = {{(0.2 - 0.006274)}^2}}\\{ = 0.038956}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{y_2^\cent = f\left( {{x_2},{y_2}} \right)}\\{ = {{\left( {{x_2} - {y_2}} \right)}^2}}\\{ = {{(0.4 - 0.023349)}^2}}\\{ = 0.141866}\\{y_3^\cent = f\left( {{x_3},{y_3}} \right)}\\{ = {{\left( {{x_3} - {y_3}} \right)}^2}}\\{ = {{(0.6 - 0.065699)}^2}}\\{ = 0.285478}\end{aligned}\)

After these we can get the predictor \({y_4}*\)using,

\(\begin{aligned}{*{20}{c}}{y_{n + 1}^ * = y_4^ * = {y_n} + \frac{h}{{24}}\left( {55y_n^\cent - 59y_{n - 1}^\cent + 37y_{n - 2}^\cent - 9y_{n - 3}^\cent} \right)}\\{ = {y_3} + \frac{h}{{24}}\left( {55y_3^\cent - 59y_2^\cent + 37y_1^\cent - 9y_0^\cent} \right)}\\{ = 0.065699 + \frac{{0.2}}{{24}}[55 \times 0.285478 - 59 \times 0.141866 + 37 \times 0.038956 - 0]}\\{ = 0.065699 + \frac{{0.2}}{{24}} \times (8.772568)}\\{ = 0.138804}\end{aligned}\)

where \(n = 3\).

Hence the value of the predictor \({y_4}*\)is \(0.138804\).

05

Find the value of \(y(1.0).\)

After that using the predictor and \({x_4} = 0.8\)we can find,

\(\begin{aligned}{*{20}{c}}{y_4^\cent = f\left( {{x_4},y_4^ * } \right)}\\{ = {{\left( {{x_4} - y_4^ * } \right)}^2}}\\{ = {{(0.8 - 0.138804)}^2}}\\{ = 0.437181}\end{aligned}\)

Now we can find the approximate value of \(y(0.8)\)as

\(\begin{aligned}{*{20}{c}}{{y_{n + 1}} = {y_4} = {y_n} + \frac{h}{{24}}\left( {9y_{n + 1}^\cent + 19y_n^\cent - 5y_{n - 1}^\cent + y_{n - 2}^\cent} \right)}\\{ = {y_3} + \frac{h}{{24}}\left( {9y_4^\cent + 19y_3^\cent - 5y_2^\cent + y_1^\cent} \right)}\\{ = 0.065699 + \frac{{0.2}}{{24}}[9 \times 0.437181 + 19 \times 0.285478 - 5 \times 0.141866 + 0.038956]}\\{ = 0.065699 + \frac{{0.2}}{{24}}(8.688333)}\\{ = 0.138102}\end{aligned}\)

where \(n = 3\).

After that we can obtain the value of \(y(1.0)\)which equals \(0.24\)as shown in the table below.

\(h = 0.2\)

\({x_n}\)

\(y{*_{n + 1}}\)

\({y_{n + 1}}\)

\(0.80\)

\(0.138804\)

\(0.138102\)

\(1.00\)

\(0.238940\)

\(0.240051\)

Hence the value of \(y(1.0)\)is\(0.24.\)

06

Find the value of the constants with \(h = 0.1\).

We have the initial-value problem,

\(y' = {(x - y)^2},\quad y(0) = 0\)

and we have to approximate the value \(y(1.0)\) with \(h = 0.1\)using the following technique.

First we have to obtain three approximate values \({y_1},{y_2},{y_3}\)using the formula

\({y_{n + 1}} = {y_n} + \frac{h}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right){\rm{ (1)}}\)

Before that we have to find the constants \({k_1},{k_2},{k_3},{k_4}\)at \(n = 0\)and \(h = 0.1\)as the following.

Since we have \({x_0} = 0,{y_0} = 0\), then we have

\(\begin{aligned}{*{20}{c}}{{k_1} = f\left( {{x_0},{y_0}} \right)}\\{ = {{\left( {{x_0} - {y_0}} \right)}^2}}\\{ = 0}\\{{k_2} = f\left( {{x_0} + \frac{1}{2}h,{y_0} + \frac{1}{2}h{k_1}} \right)}\\{ = {{\left[ {\left( {{x_0} + \frac{1}{2}h} \right) - \left( {{y_0} + \frac{1}{2}h{k_1}} \right)} \right]}^2}}\\{ = {{\left[ {\left( {0 + \frac{1}{2} \times 0.1} \right) - \left( {0 + \frac{1}{2} \times 0.1 \times 0} \right)} \right]}^2}}\\{ = 0.0025}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{k_3} = f\left( {{x_0} + \frac{1}{2}h,{y_0} + \frac{1}{2}h{k_2}} \right)}\\{ = {{\left[ {\left( {{x_0} + \frac{1}{2}h} \right) - \left( {{y_0} + \frac{1}{2}h{k_1}} \right)} \right]}^2}}\\{ = {{\left[ {\left( {0 + \frac{1}{2} \times 0.1} \right) - \left( {0 + \frac{1}{2} \times 0.1 \times 0.0025} \right)} \right]}^2}}\\{ = {{(0.05 - 0.000125)}^2}}\\{ = 0.002488}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{k_4} = f\left( {{x_0} + h,{y_0} + h{k_3}} \right)}\\{ = {{\left[ {\left( {{x_0} + h} \right) - \left( {{y_0} + h{k_2}} \right)} \right]}^2}}\\{ = {{[(0 + 0.1) - (0 + 0.1 \times 0.002488)]}^2}}\\{ = {{(0.1 - 0.0002488)}^2}}\\{ = 0.009950}\end{aligned}\)

Hence the values of the constants are \({k_1} = 0,{k_2} = 0.0025,{k_3} = 0.002488,{k_4} = 0.009950\).

07

Find the value of\({y_1}\).

We need to find the value of \({y_1}\)by using \((1)\).

\(\begin{aligned}{*{20}{c}}{{y_1} = {y_0} + \frac{h}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right)}\\{ = 0 + \frac{{0.1}}{6}[0 + 2(0.0025) + 2(0.002488) + 0.009950]}\\{ = 0 + \frac{{0.1}}{6} \times (0.0647)}\\{ = 0.001078}\end{aligned}\)

After this we can obtain the value of \(y\)for each value of \(x\)with another four constants as shown in the table below.

\(h = 0.1\)

\({x_n}\)

\({k_1} + 2{k_2} + 2{k_3} + {k_4}\)

\({y_n}\)

\(0.00\)

\(0.604700\)

\(0.00\)

\(0.10\)

\(0.136256\)

\(0.001078\)

\(0.20\)

\(0.361699\)

\(0.003349\)

\(0.30\)

\(0.009377\)

Hence the value of \({y_1}\)is\(0.001078\).

08

Find the value of the predictor \({y_4}*.\)

We have to find the value of \(y(1.0)\)using Adams-Bashforth-Moulton method. Since we have, \({x_0} = 0,{x_1} = 0.1{\rm{,\;}}{x_2} = 0.2,{x_3} = 0.3\)and the value of \(y\)from the table we can find,

\(\begin{aligned}{*{20}{c}}{y_0^\cent = f\left( {{x_0},{y_0}} \right)}\\{ = {{\left( {{x_0} - {y_0}} \right)}^2}}\\{ = {{(0 - 0)}^2}}\\{ = 0}\\{y_1^\cent = f\left( {{x_1},{y_1}} \right)}\\{ = {{\left( {{x_1} - {y_1}} \right)}^2}}\\{ = {{(0.1 - 0.001078)}^2}}\\{ = 0.009786}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{y_2^\cent = f\left( {{x_2},{y_2}} \right)}\\{ = {{\left( {{x_2} - {y_2}} \right)}^2}}\\{ = {{(0.2 - 0.003349)}^2}}\\{ = 0.038672}\\{y_3^\cent = f\left( {{x_3},{y_3}} \right)}\\{ = {{\left( {{x_3} - {y_3}} \right)}^2}}\\{ = {{(0.3 - 0.009377)}^2}}\\{ = 0.084462}\end{aligned}\)

After these we can get the predictor \({y_4}*\)using,

\(\begin{aligned}{*{20}{c}}{y_{n + 1}^ * = y_4^ * = {y_n} + \frac{h}{{24}}\left( {55y_n^\cent - 59y_{n - 1}^\cent + 37y_{n - 2}^\cent - 9y_{n - 3}^\cent} \right)}\\{ = {y_3} + \frac{h}{{24}}\left( {55y_3^\cent - 59y_2^\cent + 37y_1^\cent - 9y_0^\cent} \right)}\\{ = 0.009377 + \frac{{0.1}}{{24}}[55 \times 0.084462 - 59 \times 0.038672 + 37 \times 0.009786 - 0]}\\{ = 0.009377 + \frac{{0.1}}{{24}} \times (2.72583)}\\{ = 0.020735}\end{aligned}\)

where \(n = 3\).

Hence the value of the predictor \({y_4}*\)is\(0.020735\).

09

Find the value of \(y(1.0).\)

After that using the predictor and \({x_4} = 0.4\)we can find,

\(\begin{aligned}{*{20}{c}}{y_4^\cent = f\left( {{x_4},y_4^ * } \right)}\\{ = {{\left( {{x_4} - y_4^ * } \right)}^2}}\\{ = {{(0.4 - 0.020735)}^2}}\\{ = 0.143842}\end{aligned}\)

Now we can find the approximate value of \(y(1.0)\)as

\(\begin{aligned}{*{20}{c}}{{y_{n + 1}} = {y_4} = {y_n} + \frac{h}{{24}}\left( {9y_{n + 1}^\cent + 19y_n^\cent - 5y_{n - 1}^\cent + y_{n - 2}^\cent} \right)}\\{ = {y_3} + \frac{h}{{24}}\left( {9y_4^\cent + 19y_3^\cent - 5y_2^\cent + y_1^\cent} \right)}\\{ = 0.009377 + \frac{{0.1}}{{24}}[9 \times 0.143842 + 19 \times 0.084462 - 5 \times 0.038672 + 0.009786]}\\{ = 0.009377 + \frac{{0.1}}{{24}}(2.715784)}\\{ = 0.020693}\end{aligned}\)

where \(n = 3\).

After that we can obtain the value of \(y(1.0)\)which equals \(0.238732\)as shown in the table below.

\(h = 0.1\)

\({x_n}\)

\(y{*_{n + 1}}\)

\({y_{n + 1}}\)

\(0.40\)

\(0.020735\)

\(0.020693\)

\(0.50\)

\(0.038488\)

\(0.038469\)

\(0.60\)

\(0.063490\)

\(0.063480\)

\(0.70\)

\(0.096092\)

\(0.096106\)

\(0.80\)

\(0.136365\)

\(0.136385\)

\(0.90\)

\(0.184044\)

\(0.184073\)

\(1.00\)

\(0.238705\)

\(0.238732\)

Hence the value of \(y(1.0)\)is\(0.238732\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If air resistance is proportional to the square of the instantaneous velocity, then the velocityof a massdropped from a given height is determined from


Letv(0)=0,k=0.125,m=5slugs, and g=32ft/s2.

  1. Use the RK4 method with h = 1to approximate the velocity v(5).
  2. Use a numerical solver to graph the solution of the IVP on the interval \([0,6]\).
  3. Use separation of variables to solve the IVP and then find the actual value v(5)

Although it might not be obvious from the differential equation, its solution could "behave badly" near a point xat which we wish to approximate y(x). Numerical procedures may give widely differing results near this point. Let y(x)be the solution to the initial-value problem y'=x2+y3,y(1)=1.

  1. Use a numerical solver to graph the solution on the interval [1,1.4]
  2. Using the steps size h = 0.1, compare the results obtained from Euler's method with the improved Euler's method's approximation of y(1.4).


Construct a table comparing the indicated values of y(x)using Euler's method, the improved Euler's method, and the RK4 method. Compute to four rounded decimal places. First use h=0.1 and then useh=0.05

y=2Inxy,y(1)=2;y(1.1),y(1.2),y(1.3),y(1.4),y(1.5)

In Problems 1-10use the finite difference method and the indicated value of nto approximate the solution of the given boundary-value problem.

x2y"xy'+y=lnx,      y(1)=0,      y(2)=2;     n=8

Repeat Problem 18 for the initial-value problem y'=e-y,y(0)=0.The analytic solution is y(x)=ln(x+1). Approximate y(0.5) See Problem 7

(a) Find a formula involving cand h for the local truncation error in the nth step if the RK4 method is used.

(b) Find a bound for the local truncation error in each step if h = 0.1is used to approximate

(c) Approximate y(1.5)using the RK4 method with h = 0 and h = 0.05 See Problem 3. You will need to carry more than six decimal places to see the effect of reducing the step size.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free